Study on cone angle of shockwave front in liquid composite protective structure
DOI:
https://doi.org/10.1590/1679-78258026Abstract
Liquid composite armor has demonstrated excellent performance in protecting against shaped charge jets. Currently, most existing theoretical calculation models for the velocity range of the disturbed jet approximate the cone angle of the shockwave front as the Mach angle. However, indiscriminately equating the cone angle of the shockwave front with the Mach angle can lead to significant errors in the calculated velocity range of the disturbed jet. To address this issue, this study focuses on investigating the variation of the cone angle of the shockwave front within the liquid composite protective structure. Firstly, a dimensional analysis was conducted to determine the functional relationship between the cone angle of the shockwave front and relevant parameters. Then, the process of jet penetrating liquid composite protective structure was simulated by Autodyn. The results demonstrated that the normalized cone angle solely depends on the normalized diameter within the critical angle. By fitting the simulation data, the formula for calculating the cone angle of the shockwave front was derived.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).