Kinetic response of reinforced concrete slabs to high-velocity projectile impact-robust numerical and statistical driven modeling techniques
DOI:
https://doi.org/10.1590/1679-78258009Abstract
This research explores the dynamic responses of reinforced concrete (RC) slabs under high-velocity impacts. The study utilizes advanced numerical simulations to investigate the effects of varied impact loading and slab depths, unveiling complex rate-dependent behaviors (i.e., impact forces, reactions, accelerations, and displacements) across a diverse range of velocities. The alignment of simulation results with experimental data validates the robustness and accuracy of the employed approach. Additionally, an analytical model predicting the load-carrying capacity and deflection of these slabs under high-velocity loads is proposed. The results indicated that higher loading rates correlate with increased forces and damage until perforation. Analytical models exhibit strong performance within a ±10% error margin, and response surface analysis quantifies the impactor velocity's influence on load for a constant thickness. Overall, this investigation sheds light on the dynamic complexities of RC slabs subjected to high-velocity impacts, providing valuable insights for structural design considerations.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).