Bond Behavior of Auxetic Bars in Reinforced Concrete – A Numerical Study
DOI:
https://doi.org/10.1590/1679-78257917Abstract
The study aims to enhance the bonding strength in reinforced concrete using a novel Auxetic Tubular Deformed Rebar (ATDR). A high-resolution non-linear finite element model was developed to perform numerical analysis of pull-out tests (PoT). Two sets of numerical simulations were conducted: one to replicate the concrete behavior under compression and tension tests, and the other for PoT, validated with experimental and numerical data. Numerical tests utilized a microplane model with plasticity–damage, regularized by an implicit gradient. Auxetic geometry involves adding ellipsoidal orifices to the rebar surface. Comparing the behavior of ATDR with the conventional rebar, we observed an increase in the negative value of Poisson's ratio, resulting in higher normal and shear forces, enhancing adherence. This study presents the first comprehensive simulation of Auxetic Metamaterial Rebar in concrete, offering a promising approach to enhance bond strength. Further research, both numerical and experimental, is essential to assess Auxetic Reinforcement's mechanical behavior in diverse structural elements and load scenarios.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).