Machine Learning-Based Prediction of Axial Load Bearing Capacity for CFRST Columns
DOI:
https://doi.org/10.1590/1679-78257807Abstract
As a primary load-bearing component, accurately predicting the bearing capacity of concrete-filled rectangular steel tube (CFRST) members is an essential prerequisite for ensuring structural safety. Machine learning methods are employed to model and predict the axial load bearing capacity of CFRST columns. A test database containing 1119 members is established, and the input parameters of the machine learning model are determined using a combination of data preprocessing and correlation analysis. Four machine learning algorithms, namely Lasso, ANN, RF, and XGBoost, are selected to build the prediction models for axial load bearing capacity, and a comparative analysis of their predictive performance is conducted. The feature importance analysis is performed using the SHAP method. The results indicate that the model based on the XGBoost algorithm achieves the highest prediction accuracy. Through comparison with six existing calculation methods in domestic and international codes, the reliability of its predictive performance is verified.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).