Numerical investigations in non-watertight models based on a surface-independent discretization boundary element method
DOI:
https://doi.org/10.1590/1679-78257573Abstract
It is well known that boundary integral equations are exact mathematical representations of the governing differential equations of a boundary value problem when the integrals are written over a closed-shape boundary representation (B-representation) of the domain, usually reffered to as a watertight B-representation. However, practical geometric design technics (namely, NURBS surfaces) often do not render a watertight B-representation. Non-watertight geometric models with small gaps and overlaps are often generated in the design stage of projects. Based on a proposed surface-independent discretization approach, the present study investigates how unsought gaps affect the response of boundary element models of linear elasticity problems. The developed surface-independent discretization is applied to discretize multiple-patches NURBS B-representation geometries. Linear triangular and quadrilateral elements are adopted to discretize the independent surfaces. Generalized discontinuous elements at the edges of the visible areas of the NURBS parametric spaces are detected by a Level Set function. An offset collocation strategy is adopted for the nodes at the edges of the visible part of the parametric spaces. Thus, singularities and near singularities due to collocation are avoided in the BEM equations. The influence of gaps in the convergence of the L2-norm of boundary displacement error is verified in a 3D example with an available analytical solution. A second example with available numerical solution is analyzed with a non-watertight BEM discretization for qualitative boundary field validation. Finally, a non-watertight B-representation geometry of a crane hook is analyzed. The obtained results have pointed out that, as long as the gaps (and overlaps) are small enough, BEM models built up from non-watertight geometries may produce valuable solutions for practical purposes.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).