Analysis and optimization of impact energy absorption performance of mine refuge chamber filled with concave triangular negative poisson's ratio material

Authors

DOI:

https://doi.org/10.1590/1679-78257438

Abstract

In this paper, negative poisson's ratio material is used to fill the interlayer of mine refuge chamber, and its characteristics such as light weight, thermal insulation, vibration isolation and impact resistance are used to improve the impact resistance and thermal insulation ability of mine refuge chamber. The equivalent density, elastic modulus and yield strength of negative poisson's ratio structure of material Q345 were obtained by simulation analysis. The negative poisson's ratio material was filled into the mine refuge chamber, and the impact energy absorption and explosion transient thermal analysis were carried out. The results show that compared with the prototype, the maximum inner skin temperature of the negative poisson's ratio refuge chamber is reduced by 44.86%, the transverse and longitudinal stiffeners temperature is reduced by nearly 46.77%, and the impact deformation is reduced by 35mm, which has better safety performance. The response surface optimization method was used to optimize the whole refuge chamber filled with negative poisson's ratio material, which was more secure than before.

Downloads

Published

2023-03-24

Issue

Section

Articles