Numerical analysis of fluid-body interaction considering vortex and tornado-like flows
DOI:
https://doi.org/10.1590/1679-78257419Abstract
A numerical analysis of fluid-body interaction is performed in this work in order to evaluate the influence of vortex and tornado-like flows on immersed objects. Velocity profile models are adopted to generate vortical flow fields based on time-dependent boundary conditions and a finite element formulation is used for spatial discretization, where eight-node hexahedral elements with one-point integration are adopted. In addition, an arbitrary Lagrangian-Eulerian (ALE) approach is proposed to describe the relative motion between vortex flow and immersed objects. The flow governing equations are discretized using an explicit two-step Taylor-Galerkin scheme and tornado flow fields are simulated using the Rankine Combined Vortex Model (RCVM) and the Vatistas Model. Turbulence modeling is performed using Large Eddy Simulation (LES) with the Smagorinsky’s sub-grid scale model. Problems involving moving and stationary tornadoes interacting with fixed and moving objects are analyzed, where significant aerodynamic forces are observed on the immersed bodies, producing also significant changes in the vortex flow characteristics.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).