Fault Diagnosis of Motor Bearing Based on Current Bi-Spectrum and Convolutional Neural Network
DOI:
https://doi.org/10.1590/1679-78257364Abstract
Motor bearings are prone to different degrees of performance degradation, fatigue damage and failure undergoing complex and harsh environments. Vibration signal analysis is a mature method for diagnosing motor bearing faults, while it is not applicable for installing additional vibration sensors on many occasions. Practically, the fault of motor bearings changes the air gap flux between the rotor and stator, which leads to harmonic fluctuations in the stator current. The current signals can be used to diagnose the motor bearing faults without additional sensors. Inevitably the harmonics caused by the motor bearing faults will be coupled with the original signals. This paper combines bi-spectrum and Convolution Neural Network (CNN) to analyze the current signals of motor bearing faults. The CNN diagnosis model is trained based on the local bi-spectrum of current, and the CNN parameters are optimized. Diagnose and analyze motor bearing faults with different fault implantation methods, working conditions, fault degrees and fault locations. The diagnostic accuracy reaches more than 80%.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).