Improved friction model applied to plane sliding connections by a large deformation FEM formulation
DOI:
https://doi.org/10.1590/1679-78257321Abstract
Friction is an important source of dissipation in dynamical systems. Properly considering it in the numerical model is fundamental to obtain stable and representative responses in structures and mechanisms. This is especially significant for the well-known Coulomb model due to discontinuity in force when stick-slip transition occurs. In this work an improved friction force model is proposed to smooth the force transition at null velocity, with an additional parameter obtained from the own system state. The improved model is employed in sliding connections of plane frames finite elements. A total Lagrangian Finite Element Method (FEM) formulation based on a positional description of the motion is employed. Using a variational principle, frictional dissipation is added to the total mechanical energy to develop the equations of motion. The resulting nonlinear equations are solved by the Newton-Raphson method accounting for the friction force update in the iterative process. Examples are presented to show the formulation effectiveness and possibilities in simulating dynamical systems that present the stick-slip effect.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).