Influence of stress triaxiality on the fracture behaviour of Ti6Al4V alloy manufactured by electron beam melting
DOI:
https://doi.org/10.1590/1679-78257293Abstract
This paper aims to investigate the influence of stress triaxiality on the fracture behaviour of Ti6Al4V fabricated by Electron Beam Melting (EBM). Here, specimens with seven configurations were manufactured and tested to obtain a wide range of stress triaxialities. A combined approach using Digital Image Correlation (DIC) and finite element (FE) modelling was used to evaluate the current stress triaxiality levels of the various specimens. The material fracture envelope was defined with the triaxiality in a range from -0.28 to 0.71, noting that the fracture was strongly dependent on the stress triaxiality. The characterisations were then carried out by testing an ad-hoc specimen to evaluate failure criteria at low and high stress triaxialities. It was shown that the FE model using the failure criterion based on triaxiality offers more accurate predictions of the material's failure response than that based on the effective plastic strain. The modelling approach based on anisotropic elasto-plasticity contributes to better predictions of the alloy's response. Thus, the failure models based on the stress triaxiality are highly recommended for producing accurate numerical predictions of the fracture response of Ti6Al4V-EBM.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).