Damage identification analysis of Cable-stayed arch-truss based on multi-node time -domain data fusion
DOI:
https://doi.org/10.1590/1679-78257207Abstract
The potential risk of cable-stayed arch-truss damage is large and the damage is undetectable. The damage identification methods based on frequency domain have limitations such as limited data and complex theoretical methods. A damage identification method based on multi-node time-domain data fusion was proposed to overcome these limitations. The time-domain data library was established by finite element analysis, and the time-domain data was preprocessed and augmented. Two CNNs models were established to identify the damage location and damage degree of cable-stayed arch-truss. The proposed method was verified by the analysis of a practical cable-stayed arch-truss scale model, and the recognition effect of the method on noisy data and noise-free data was studied respectively. The results showed that the CNN can effectively identify the damage degree and damage location of cable-stayed arch-truss structure with good robustness. CNN with Gaussian noise can accurately predict the damage degree of cable-stayed arch-truss. The prediction error of most elements is within 15%, which can meet the actual needs of engineering.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).