Analysis of Internal Resonance of a 3DOF Dynamic System Reduced from the Tower-Cable-Beam Structure
DOI:
https://doi.org/10.1590/1679-78257029Abstract
To study the complex mechanism of the high-dimensional nonlinear cable systems, a 3 degree-of-freedom model reduced from the tower-cable-beam structure is proposed and investigated in this paper. Based on the D’Alembert Principle, the dynamic equations of in-plane and out-of-plane vibration are established and simulated by the 4th-order Runge-Kutta method. The results exhibit the phenomenon of coupling internal resonance under the systematical conditions revealed by the analytical analysis on the dynamic equations. The smaller mass ratio of the cable-beam would lead to a greater vibration intensity while the tensile stiffness and initial force of the cable have no significant effect. The in-plane and out-plane cable vibrations are independent, and the internal resonance would not be excited by the harmonic excitation in the cable axis. Additionally, applying damping on any component of the system is verified to be an effective approach to vibration reduction. Compared with ordinary cables, cables with less-weight and high-strength materials would be exited to less vibration intensity under the same external excitation.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).