Predicting compressive strength of concrete with fly ash, metakaolin and silica fume by using machine learning techniques
DOI:
https://doi.org/10.1590/1679-78257022Abstract
The compressive strength (CS) is the most important parameter in the design codes of reinforced concrete structures. The development of simple mathematical equations for the prediction of CS of concrete can have many practical advantages such as it save cost and time in experiments needed for suitable design data. Due to environmental concerns with the production of cement, different supplementary cementitious materials are often used as partial replacements for cement such as fly ash (FA), metakaolin (MK), and silica fume (SF). However, little work has been done for developing simple mathematical equations for the prediction of CS with FA, MK and SF by using the M5P algorithm. Moreover, the M5P algorithm is not compared with other modelling techniques such as linear regression analysis, gene expression programming (GEP) and response surface methodology. It is established that, for concrete with FA and SF, M5P showed superior prediction capability as compared with other modelling techniques, however, GEP gave the best performance for concrete with MK: CS decrease by increasing FA content, while it increases by increasing MK and SF content.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).