ULTIMATE BENDING STRENGTH EVALUATION OF MVFT COMPOSITE GIRDER BY USING FINITE ELEMENT METHOD AND MACHINE LEARNING REGRESSORS
DOI:
https://doi.org/10.1590/1679-78257006Abstract
This paper has evaluated the bending performance of a novel prefabricated MVFT steel-concrete composite girder. 9 meters pilot MVFT girder was analyzed by validated finite element model. In the pilot test, the height of web, the length of grouted concrete in the girder and net spacing between webs were parametrically modeled to discuss their effect to the bending strength. An ultimate bending strength formula has been obtained, which was based on the regression of parametric results. In the meantime, the two Machine Learning (ML) models, BP neural network and Least Squares Support Vector Machine, have been also implemented to train and then predict the ultimate strength of MVFT girder. Three factors were selected as input in ML models: the distance between steel girder’s Tensile Centroid(TC) and slab’s Compressive Centroid(CC), the distance between steel girder’s TC and its CC, the compressive area of steel girder. After the completion of the ML training, the ultimate strength predictions of 30 meters MVFT girder by BP model and the formula have been compared, which agrees well with each other and validates their accuracy.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).