Peak Ground Acceleration Models Predictions Utilizing Two Metaheuristic Optimization Techniques
DOI:
https://doi.org/10.1590/1679-78256940Abstract
Peak ground acceleration (PGA) is frequently used to describe ground motions accurately to defined the zone is critical for structural engineering design. This study developed a novel models for predicting the PGA using Artificial Neural Networks-Gravitational Search Algorithm (ANN-GSA) and Response Surface Methodology (RSM). This paper grants the prediction of PGA for the seismotectonic of Iraq, which is considered the earlier attempt in Iraqi region. The magnitude of the earthquake, the average shear-wave velocity, the focal depth, the distance between the station, and the earthquake source were used in this study. The proposed models are constructed using a database of 187 previous ground motion records, this dataset is also utilized to evaluate the effect of PGA’s parameters. In general, the results demonstrate that the newly proposed models exhibit a high degree of correlation, perfect mean values, a low coefficient of variance, fewer errors, and an acceptable performance index value compared to actual PGA values. However, the composite ANN-GSA model performs better than the RSM model.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).