ANALYSIS OF THE EFFECTIVE DYNAMIC PROPERTIES OF PARTICULATE COMPOSITES WITH RESPECT TO CONSTITUENT PROPERTIES
DOI:
https://doi.org/10.1590/1679-78256893Abstract
The propagation of longitudinal and shear elastic waves through a multi-phase material was studied and the effective elastic properties of the medium were evaluated. The distribution of the reinforcing inclusions was considered random throughout the matrix. The effective dynamic properties of the composites, including their effective bulk and shear moduli and effective densities, were examined along with the effective phase velocity and attenuation of the incident P and S waves. The Sabina–Willis model was employed to study the wave propagation behavior, and the model performance was analyzed through comparison with experimental data from the literature. The results indicated that wave propagation significantly depended on the physical and mechanical properties of inclusions relative to those of the matrix and the normalized wave number of the propagated elastic wave. Moreover, despite the fact that the elastic properties of the incidence
in the P and S waves exhibited a similar trend, their values differed significantly. The results can serve as a design criterion for composite materials under dynamic loading.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).