TRIBOLOGICAL AND MECHANICAL PROPERTIES OF EPOXY REINFORCED BY HYBRID NANOPARTICLES
DOI:
https://doi.org/10.1590/1679-78256384Abstract
IN THE PRESENT WORK, THE NANO-ALUMINUM OXIDE (AL2O3), NANO-SILICON CARBIDE (SIC), OR A HYBRID OF THEM WERE INFUSED INTO EPOXY RESIN WITH AN ULTRASONIC SYSTEM WITH VARIOUS WEIGHT PERCENTAGE RATIOS OF THE NANOPARTICLES. SMALL PUNCH TESTING (SPT) AND INDIRECT TENSION TESTING WERE ADOPTED TO MEASURE THE TENSILE PROPERTIES OF THE PRESENT NANOCOMPOSITES. PIN-ON-RING WEAR TESTING WAS ALSO PERFORMED TO EXAMINE WEAR PERFORMANCE OF EPOXY AL2O3 AND SIC NANOCOMPOSITES. THE FINITE ELEMENT ANALYSIS METHOD IS INTRODUCED TO SIMULATE THE INDIRECT TENSION TEST AND SPT TO GIVE A COMPLETE VISION OF THE STRESS DISTRIBUTION IN THE NANOCOMPOSITE SPECIMEN DURING THE LOADING, AND TO EXAMINE ITS MODE OF FAILURE. GOOD AGREEMENT BETWEEN THE NUMERICAL AND EXPERIMENTAL RESULTS WAS OBSERVED. THE ADDITION OF NANOPARTICLES FROM AL2O3 OR SIC IMPROVES THE WEAR RESISTANCE OF EPOXY. FURTHERMORE, EPOXY WITH NANO-AL2O3 HAS A HIGHER WEAR RESISTANCE THAN THAT WITH NANOSIC. THE TENSILE STRENGTH AND MODULUS OF ELASTICITY OF EPOXY ARE REDUCED BY ADDING THE AL2O3 NANOPARTICLE. THE SYNERGISTIC EFFECT IS NOT OBSERVED IN THE PRESENT STUDY.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY] that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).