GFEM STABILIZATION TECHNIQUES APPLIED TO DYNAMIC ANALYSIS OF NON-UNIFORM SECTION BARS

Authors

  • PAULO DE OLIVEIRA WEINHARDT GRADUATE PROGRAM IN NUMERICAL METHODS IN ENGINEERING, FEDERAL UNIVERSITY OF PARANÁ
  • LETÍCIA BARIZON COL DEBELLA GRADUATE PROGRAM IN CIVIL CONSTRUCTION ENGINEERING, FEDERAL UNIVERSITY OF PARANÁ
  • MARCOS ARNDT GRADUATE PROGRAM IN CIVIL CONSTRUCTION ENGINEERING, FEDERAL UNIVERSITY OF PARANÁ
  • ROBERTO DALLEDONE MACHADO GRADUATE PROGRAM IN NUMERICAL METHODS IN ENGINEERING, FEDERAL UNIVERSITY OF PARANÁ

Abstract

THE FINITE ELEMENT METHOD (FEM), ALTHOUGH WIDELY USED AS AN APPROXIMATE SOLUTION METHOD, HAS SOME LIMITATIONS WHEN APPLIED IN DYNAMIC ANALYSIS. AS THE LOADS EXCITE THE HIGH FREQUENCY AND MODES, THE METHOD MAY LOSE PRECISION AND ACCURACY. TO IMPROVE THE REPRESENTATION OF THESE HIGH-FREQUENCY MODES, WE CAN USE THE GENERALIZED FINITE ELEMENT METHOD (GFEM) TO ENRICH THE AP-PROACH SPACE WITH APPROPRIATE FUNCTIONS ACCORDING TO THE PROBLEM UNDER STUDY. HOWEVER, THERE ARE STILL SOME ASPECTS THAT LIMIT THE GFEM APPLICABILITY IN PROBLEMS OF DYNAMICS OF STRUCTURES, AS NUMERICAL INSTABILITY ASSOCIATED WITH THE PROCESS OF ENRICHMENT. DUE TO NUMERICAL INSTABILITY, THE GFEM MAY LOSE PRECISION AND EVEN RESULT IN NUMERICALLY SINGULAR MATRICES. IN THIS CONTEXT, THIS PAPER PRESENTS THE APPLICATION OF TWO PROPOSALS TO MINIMIZE THE PROBLEM OF SENSITIVITY OF THE GFEM: AN ADAPTATION OF THE STABLE GENERALIZED FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS AND A STABILIZATION STRATEGY BASED ON PRECONDITIONING OF ENRICHMENT. EXAMPLES OF ONE-DIMENSIONAL MODAL AND TRANSIENT ANALYSIS ARE PRESENTED AS BARS WITH CROSS SECTION AREA VARIATION. NUMERICAL RESULTS OBTAINED ARE DISCUSSED ANALYZING THE EFFECTS OF THE ADOP-TION OF PRECONDITIONING TECHNIQUES ON THE APPROXIMATION AND THE STABILITY OF GFEM IN DYNAMIC ANALYSIS.

Downloads

Published

2018-02-05

Issue

Section

MecSol 2017 Joinville