PREDICTION OF COMBINED EFFECTS OF FIBERS AND NANO-SILICA ON THE MECHANICAL PROPERTIES OF SELF-COMPACTING CONCRETE USING ARTIFICIAL NEURAL NETWORK

Authors

  • HAMIDREZA TAVAKOLI BABOL UNIVERSITY OF TECHNOLOGY

Keywords:

FIBER, SELF-COMPACTING CONCRETE, NANO-SILICA, MECHANICAL PROPER-TIES, ARTIFICIAL NEURAL NETWORK.

Abstract

IN THIS RESEARCH, THE COMBINED EFFECT OF NANO-SILICA PARTICLES AND THREE FIBER TYPES (STEEL, POLYPROPYLENE AND GLASS) ON THE MECHANICAL PROPERTIES (COMPRESSIVE, TENSILE AND FLEXURAL STRENGTH) OF REINFORCED SELF-COMPACTING CONCRETE(SCC) IS EVALUATED. FOR THIS PURPOSE, 70 MIXTURES IN A, B, C, D, E, F AND G SERIES REPRESENTING 0, 1, 2, 3, 4, 5 AND 6 PERCENT OF NANO-SILICA PARTICLES IN REPLACING CEMENT CONTENT ARE CAST. EACH SERIES INVOLVES THREE DIFFERENT FIBER TYPES AND CONTENT; 0.2, 0.3 AND 0.5% VOLUME FOR STEEL FIBER, 0.1, 0.15 AND 0.2% OF VOLUME FOR POLYPROPYLENE FIBER AND FINALLY 0.15, 0.2 AND 0.3% OF VOLUME FOR GLASS FIBER. THE RESULTS SHOW THAT THE SIMULTANEOUS USAGE OF AN OPTIMUM PERCENTAGE OF FIBER AND NANO-SILICA PARTICLES WILL IMPROVE THE MECHANICAL PROPERTIES OF SCC. MOREOVER, THE OBTAINED RESULTS FROM THE EXPERIMENTAL DATA ARE USED TO TRAIN A MULTI-LAYER PERCEPTRON (MLP)TYPE ARTIFICIAL NEURAL NETWORK(ANN). THE TRAINED NETWORK IS THEN USED TO PREDICT THE EFFECT OF VARIOUS PARAMETERS ON THE DESIRED OUTPUT NAMELY THE FLEXURAL TENSILE STRENGTH, TENSILE STRENGTH BEHAVIOR AND COMPRESSIVE STRENGTH.

Author Biography

HAMIDREZA TAVAKOLI, BABOL UNIVERSITY OF TECHNOLOGY

Downloads

Published

2014-07-30

Issue

Section

Articles