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Abstract 
In this work we demonstrate the effectiveness of an a-posteriori error estimator based on the Prager Synge 
theorem for a wide range of problems: smooth problem, problem with a steep gradient, problem with a 
boundary condition induced singularity, problem with varying conductivity. A very simple but innovative 

strategy is presented for deciding on h  or p  adaptivity. Exponential convergence rates were obtained for all 

test problems. The reconstruction of ( )H div  compatible functions is applied to meshes with hanging nodes. 

We believe this work represents an important step towards a cost effective hp -adaptive strategy with a 

posteriori error estimation. 
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1 INTRODUCTION 

The convergence rate (in the energy norm) of traditional finite element approximations are suboptimal in the 
presence of singularities. If prescribed accuracies are required, strongly graded meshes must be used resulting in a 
substantial increase in the number of degrees of freedom of the global system of equations. 

The hp -Finite Element Method ( hp -FEM) generalizes FEM by allowing independent adjustment of both mesh size 

( )h  and polynomial degree ( )p within each element. Pioneering research by Babuska et al. (Gui and Babuska, 1986; Guo 

and Babuska, 1986a,b) established that hp -FEM achieves exponentially fast convergence when proper hp -adaptivity is 

applied. This approach concentrates degrees of freedom in regions of interest by strategically combining localized h -
refinement (dividing elements into smaller ones) and p -enrichment (increasing the polynomial approximation order 

within an element). In essence, hp -adaptivity provides an efficient approach to decreasing the computational effort 

involved in achieving high-resolution simulations. 
Since then, various hp -adaptive strategy approaches have been proposed, primarily driven by localized a posteriori 

error estimation metrics. For instance, works in Demkowicz et al. (2002) and Rachowicz et al. (2006) are based on 
minimizing the global interpolation error, while approaches by Ainsworth and Senior (1998); Dorfler and Heuveline 
(2007), and Heuveline and Rannacher (2003) rely on the local regularity of  the exact solution, determined by solving 
local boundary value problems. Furthermore, the approaches by Eibner and Melenk (2007) and Houston and Süli (2005) 
are based on the analyticity estimate of the exact solution. Incorporating knowledge of the underlying physical behavior 
of the problem enhances decision- making and can lead to effective hp -refinement efficiency (Ainsworth and Senior, 

1999). For conforming hp -FEM approximations in elliptic problems, in Mitchell and McClain (2014), several hp -adaptive 

strategies are comprehensively summarized, and the results of numerical experiment designed to evaluate their 
performance are presented. 

A properly designed a posteriori error estimator provides effective information about the error in a specified norm 
or in a functional of interest, both locally and globally. The Prager and Synge hypercircle method (Prager and Synge, 
1947), originally developed for elasticity problems, detailed also in Synge (1957) and Bertrand et al. (2020), served as a 
foundational inspiration for a posteriori error estimators that utilize equilibrated flux reconstruction in Galerkin 
approximations for elliptic problems. However, Ladeveze and Leguillon (1983) pioneered this type of error estimation, 
developing a local equilibrated flux reconstruction technique. By employing the partition of unity, their method allows 
the construction of an equilibrated flux to be reduced to localized, vertex patch-based calculations. For computational 
efficiency, patch-based reconstruction can be advantageously employed over global reconstruction techniques. 

Unlike residual-based error estimators (Verfiirth, 2013), whose reliability constants are typically unknown and 
problem-dependent, equilibrated flux a posteriori error estimators offer the distinct advantage of providing error upper 
bounds with a constant of one. Both types of estimators satisfy local efficiency, meaning the error estimate also 
represents local lower bounds of the error, up to a generic constant. Another appealing property of equilibrated flux a 
posteriori error estimators (first revealed for Braess et al. (2009) in the conforming finite element setting) is that the 
error estimator is polynomial-degree robustness. This signifies that the generic constant in the local error lower bound 
is independent of the polynomial degree, depending solely on the shape-regularity parameter of the underlying mesh. 
The polynomial-degree robustness does not hold for residual-based estimators, as shown by Melenk and Wohlmuth 
(2001). Recent overviews providing insights into the state-of-the-art and perspectives concerning a posteriori error 
estimation and adaptivity can be found in, e.g., Chamoin and Legoll (2023); Becker et al. (2024) and Bringmann et al. 
(2024). 

Vohralík et al. (Ern and Vohralík, 2015; Dolejsi et al., 2016) introduced a polynomial-degree-robust equilibrated flux 
a posteriori error estimator. This estimator is applicable to conforming, non-conforming, discontinuous Galerkin, and 
mixed finite element approximations within a unified framework for Poisson problems. Its design relies on the local 
reconstruction of an equilibrated flux by solving patch-wise problems using a mixed finite element method. Furthermore, 
Dolejsi et al. (2016) details numerical assessments of hp -adaptive strategies driven by this estimator, employing the 

interior penalty Discontinuous Galerkin method. Building on these developments, Daniel et al. (2018) proposed an hp -

adaptive strategy for 1H -conforming finite element approximations on conforming simplicial meshes, where the hp -

decision is made using two local primal solves on selected patches. 
We have not identified any documented computational implementations of hp -adaptive algorithms in the 

literature that are guided by the generic Vohralík et al. estimator and applied to 1H -conforming finite element 



 
  

 

 
approximations on meshes with hanging nodes. The computational implementation for this scenario inherently presents 
challenges, including the maintenance of continuity at element interfaces and solving mixed finite element formulations 
localized to patches, particularly on non-conforming meshes characterized by elements of various refinement levels and 
a heterogeneous distribution of polynomial degrees. 

In the present work, we focus on the diffusion problem 

( ) , in 

0, on 

A u f

u
                   (1) 

where 2 is a polygonal domain (open, bounded and connected set) with a Lipschitz boundary; A is a symmetric 

positive definite tensor, and piecewise constant with respect to the decomposition 1
n

ii= = U , where each subdomain

, 1,...,i i n = , is open and polygonal; and ( )2f L  . Our primary goal is to extend the generic error estimator from 

Ern and Vohralík (2015) to address the diffusion problem (1) and to propose a simple, cost-effective hp -adaptive 

refinement strategy for 1H -conforming Finite Element approximations on both quadrilateral and triangular meshes, 
which may be non-conforming. 

Broadly, h -adaptivity is employed for an element when its estimated residual and flux errors are both significant. 
Meanwhile, p -adaptivity is chosen when the element’s estimated flux or residual error is low. When dealing with 

problems featuring point singularities, prior knowledge of their locations dictates the so application of h -refinement to 
elements directly contacting these singular points. 

The structure of this manuscript is as follows. Section 3 extends specific constructs and properties, initially 
developed for conforming meshes, to nonconforming mesh settings. Section 4 outlines the equilibrated flux 
reconstruction and the a posteriori error estimator based on equilibrated flux, encompassing both conforming and 
nonconforming meshes. The hp -adaptive refinement strategy proposed in this work is outlined in Section 5. Results 

from numerical experiments on five benchmark problems are presented in Section 6. Section 7 explores the sensitivity 
of the algorithm with respect to variations in its parameters. Finally, conclusions are provided in Section 8. 

All numerical experiments were conducted with the assistance of the NeoPZ framework (Devloo, 1997), a multi-
purpose Finite Element platform developed entirely in C++ and built upon an object-oriented architectural design. 

2 NOTATIONS AND PRELIMINARIES 

Let Th  be a partition (triangular or quadrilateral mesh) of a polygonal domain 2 , composed of closed 

elements, generally denoted by K , whose interiors are pairwise disjoint. The coarseness of the mesh is represented by 

the largest diameter across its elements, which is denoted by h . We are interested in triangular or affine quadrilateral 
meshes, without any limitations on the hanging sides and with a heterogeneous polynomial degree distribution. 

The parametric (master) elements are ( ) , : 0 , 1, 1K x y x y x y=   +   or ( ) , : 1 , 1K x y x y= −    

Given an element K , let :Kx K K  be the standard geometric map. 

The space of square integrable functions (Lebesgue space) is denoted by ( )  22 :L f f d =     and 

equipped with the usual norm  defined by 
2 2f f dW  and inner product ( ),f g f gd=   . The Sobolev space 

of functions whose first-order weak derivatives are square-integrable 

( ) ( ) ( ) 1 2 2: , 1H v L D v L   =        

is equipped with the semi norm 
1
  and norm 

1
 defined by 

2

1
v v vd=      and 

2 2 2

1 1
v v v= + respectively. 

Another space of interest is ( ) ( ) ( ) 22 2div, : ,L L  =     
 

H q q q . The geometric map induces 

isomorphisms: ( ) ( )1 1:K H K H K→F , given by ( ) 1
K Kv v x−= oF , and the well-known Piola’s transformation 

( ) ( )div : div; div;K K K→H HF . 



 
  

 

 

For an integer 0p , let ( )p K  (respectively, ( )p KP ) represent the space of polynomial functions of maximum 

degree p  in each variable (respectively, of total degree p ) on the quadrilateral (respectively, triangular) master element 

K . Henceforth, ( )p KS  will represent ( )p K  or ( )p KP  according to whether the master element is quadrilateral 

or triangular, respectively. 

Given a polynomial-degree distribution ( )
h

K K
pp


=

T
, for each element hKT , consider the polynomial 

space 

( ) ( ) ( ) : ,
K Kp pK v v v v K= = F vS SK

 

then the conforming hp-finite element space can now be defined as 

( ) ( )  ( )0 1
0: ,

Kh p hK
U v C v K K Hp =       TS

                 (2) 

Each space hU
p  is uniquely determined by a pair made up of mesh and polynomial-degree distribution, and reciprocally. 

We consider two subspaces of ( )div;KH , constituted of vector-valued polynomials. If K  is quadrilateral, 

it is considered the classical Raviart-Thomas spaces ( )p KRT , and if K  is triangle, it is considered the classical 

Brezzi-Douglas-Marini spaces ( )p KBDM , see Ervin (2012). Henceforth, let’s represent any of these classical spaces 

with ( )p KM , depending on the type of master element involved. Also, be 

( ) ( ) ( ) div: ,p K pK v v v v M KM = = F v 

For mixed finite element formulations, the following pair (primal and dual) hp - adaptive spaces are also of interest: 

( ) ( ) 2 : ,
Kh p hK

V v L v K Kp =      TS
 

and 

( ) ( ) div; : ,
Kh p hK

v H v M K KpM =     T  

It is well-established that properly balancing the ( ) ( )2div; L − H  pairs of mixed finite element spaces is of 

critical importance (De Siqueira et al., 2013; Farias et al., 2017; Devloo et al., 2016). 

3 TWO DIMENSIONAL NON-CONFORMAL MESHES 

In the two-dimensional case, it is essential to recall that a node in a mesh is called a hanging node when it 
belongs to the edge of a mesh element without coinciding with any of its vertices. A node not designated as 
a hanging node is referred to as a free node. A mesh is conforming when it has no hanging nodes; otherwise, 
it is said to be non-conforming. Equivalently, a mesh is conforming when the non-empty intersection of two 
distinct elements results in a common node or edge. 

In this and the subsequent sections, hT  denotes either a quadrilateral or triangular mesh, which may be 

conforming or non-conforming. 
 

Definition 1. The hat function associated with a free node a  of hT , is a continuous function 

:  →a  

such that 
K

ya  belongs to ( )1 KS  for each hK  T , and it has a value of 1 at node a  and vanishes at all other 

free nodes of hT . 

Since each function in ( )1 KS , is uniquely determined by its values at the vertices of K , each free node of hT  has 

a unique associated hat function. See Figures 1 and 3. 

Definition 2. The patch, a , associated with a free node a  of hT , is the collection of elements whose interior 

is contained within the support of the hat function associated with that node. 



 
  

 

 
Definition 2 is illustrated in Figures 1 and 2. 

Definition 3. A mesh is k -irregular if it has at least one edge containing a number of k  hanging nodes. 

According to the above definition, a conformal mesh is a 0 -irregular mesh. Therefore, a conformal mesh is also 
referred to as a regular mesh. 

Higher values of k  can result in patches with more complex structures, mainly an increase in the number of 
elements they comprise, see Figures 1 and 2, which in practice implies greater computational complexity. Moreover, 
experience has shown that the quality of the gradient reconstruction degrades when 1k>  . For this reason, in this article, 

we work with meshes that are up to 1-irregular. 
 

 

Figure 1: A patch associated to a node A in a 0-irregular mesh (left) and its hat function (right). 

 

Figure 2: Patch of node A in a 1-irregular mesh (left) and of node B in a 2-irregular mesh (right). 

               

Figure 3: Hat functions of the patches associated with nodes A (left) and B (right) of figure 2. 

Lemma 1. (Partition unity property) Let T
i

i
h

 be a mesh obtained in the i-th iteration by applying successive adaptive h−

refinements with arbitrary element selection in each iteration, starting from an initial conforming triangular or 

quadrilateral mesh 
0

0
h

T , where the h - refinement of an element consists of dividing it into four sub-elements using line 



 
  

 

 

segments connecting the midpoints of its sides. Then, for each 0i , the sum of the hat functions corresponding to 
i

i
h

T  

is equal to 1. 

Proof. For the mesh 
i

i
h

T , let iN  denote the set of free nodes, i
a  (where iNa ) the respective hat function, and 

i

i i
a

S
N




=  a  (the sum of all hat functions associated with 
i

i
h

T ). 

Due to the polynomial structure of the hat functions over each element of 
i

i

hT , if iS  assumes a constant value at all 

vertices of the element hK T , then it holds the same value over the entire element. 

The proof will proceed by induction on i . In the case 0i = , the property is satisfied due to the conforming nature of 
the mesh. 

Assume that 1iS =  is true for some i k= , 0k . Note that 1k kN N + . For each T T
1

1

k k

k k
h h

K
+

+ , it holds that 

1k kK K
  +=a a  for kaN , and 1 0k K

y + =a  for 1k k+a . Consequently, we obtain 

1

1 1 1 1
k k

k k k kK KK K
a a

S S
N N

 

+

+ + +
 

= = = = a a                    (3) 

Now, let's take 
1

1

k k

k k
h h

K
+

+  and let b  be a vertex of this. If 1kb N + , it holds that 1 1( ) ( ) 1a
k kS b b+ += = . When 

b  is a hanging node of 
1

1

k

k
h

T
+

+ , it belong to boundary of some element of 
1

1

k k

k k
h h

T T
+

+ , and by (3) we also conclude that 

1( ) 1kS b+ = . 

4 EQUILIBRATED FLUX A POSTERIORI ERROR ESTIMATE 

The weak primal formulation of problem (1) is given by: Find 1
0( )u H   such that 

, ,( ) ( )A u v f v   1
0( )v H              (4) 

and the discretized weak primal formulation of problem (1) is given by: Find h hu Up  such that 

, ,( ) ( )h h hA u v f v  =    h hv U p             (5) 

Any function s  in (div, )H  constructed from hu  such that, 

( ) ( ),1 ,1 hK K
f K T  =  s  

we will call the reconstructed equilibrated flux. 
 

4.1 The Generalized Prager-Synge identity 

Theorem 1. Let 1
0( )u H   be the solution of (4) and ( )div, Hs  satisfying the equilibrium equation div .f=s  

Then 
1 1 1 1 1 1

2 2 22 2 2 2 2 2 ,|| || || || || ||A u A v A A u A A v
− −

 −  + +  = + s s  

for all 1
0( )v H  . 

Proof. 
1 1 1 1 1 1 1 1 1 1

2 2 22 2 2 2 2 2 2 2 2 22 ,|| || || || || || ( )A A v A v A u A A u A v A u A A u
− − −

+  =  −  + +  +  −  + s s  

In the previous equality, the third term on the right side is zero, since by property 
1

2A  is symmetric, and 
1 1 1

2 2 2 , 0.( )( )( ) ( )( ) ( )t t tv u A A A u d v u A u d v u A u
−

 
 −  +   =  −  +   =  −  +  = s s s  



 
  

 

 

The last equality is obtained by applying Green's theorem on 1
0( ) (div, ).H   H  

Taking hv u=  and h=s s  where hu  is the solution of (5) and hs  is any equilibrated flux reconstructed, a direct 

application of Prager-Synge identity gives an a posteriori error estimator with constant one 

1 1 1 1
2 22 2 2 2|| || || ||h h hA u A u A A u

−
 −   + s  

4.2 Flux reconstruction for conforming and nonconforming meshes 

Let 2( , ) (div, ) ( )h hV LM    H  be a pair of mixed finite element spaces, and let hM
a  and hV

a  denote their 

respective restrictions to the patch wa . In addition, let Vh  be the set of free nodes of Th , and their respective subsets 

of interior nodes and border nodes V int
h  and V ext

h . 

The following definition represents an extension of Definition 3.1 in Daniel et al (2018), formulated to enable 
equilibrated flux reconstruction in the context of diffusion problems such as (1). 

 

Definition 4 (Equilibrated flux reconstruction σh ) Let hu  solve (5). For each V ,ha  prescribe ςh hM
a a  and h hr Va a  

by solving 
1 , , ,( ) ( ) ( )h h h h h h h hA r uw w wV y- v v v v M

a a a

a a a
a  

 , ,( ) ( )h h h h h hq f A u q q Vw wV y y
a a

a a
a a

 

with the spaces 

V( ) : 0  : , on{ } int
h h h h hnww w=V v V v

a aa
a a  

( ) : 1: ( , ) 0 ,{ } int
h h h h hS q S q ww V

a

a
a a  

: ( ) : 0 on ,{ } ext
h h h h hnww wV v V v

a

a
a a

a  

V: ( )}, ext
h h hS S wa

a
a  

Then, set 

σ
V

:
h

h hV=
a

a  

Unlike the equilibrated flux reconstruction proposed in Dolejsi et al. (2016) and Daniel et al. (2018), which imposes 
adjustments on both patch meshes and their corresponding polynomial degree distributions, our approach does not 
require such local constraints. 

4.3 A posteriori error estimate 

The purpose of an a posteriori error estimates is to establish bounds on the error between the obtained numerical 
approximation and the exact, yet unknown, solution. This computation is feasible in practice after the approximate 
solution is available. 

The following theorem is an extended version of Theorem 3.3 of Earn and Vohralík (2015) to problems with 
heterogeneous permeability. The demonstration follows the same method as the original theorem’s proof, with 
appropriate adjustments to handle the extended scope. 

Theorem 2 Let u  the solution of (4) and hu  an arbitrary function in ( )1
hH T . Let hs  be a potential reconstruction and 

hσ  an equilibrated flux reconstruction. For any ,hK T  define the residual estimator by 

, 1

2
,

: ,|| ||K
R K h K

A K

h
f

C





= −σ  



 
  

 

 

where ,A KC  is the smallest eigenvalue of A  on element K ; the flux estimator by 

1 1

2 2
, : || ||F K h h KA u A

−

=  + σ  

and the non-conformity estimator by 
1 1

2 2
, : || ||NC K h h KA u A s =  −   

The following upper bound holds: 
1 1

2 2 22 2
, , ,( ) .|| ||

h h

h F K R K NC K

K K

A u A u   
 

 −   + + 
T T

         (6) 

Proof. Consider the broken Sobolev space 1( )hH T  equipped with the positive semidefinite 1H -broken inner product 

( , )A  , this induces an (auxiliary) inner product on 1
0( )H  , constituting an (auxiliary) Hilbert space. Then applying 

the Riesz representation theorem to the functional defined on the auxiliary space 1
0( , ) : ( )hA u H   → , there exist 

one and only one 1
0( )s H   such that 

1
0( , ) ( , ) ( )hA s v A u v v H  =                           (7) 

The continuity of the defined functional is justified from the Cauchy-Schwarz inequality 
1 1

2 2( , )| |h hA u v A u A v    ‖ ‖ ‖ ‖  

From Equation (7) we conclude that the function hs u−  is orthogonal to 1
0( )H   respect to positive semidefinite 1H -

broken inner product. By this property we obtain 
1 1 1 1 1 1

2 2 2 12 2 2 2 2 2
0( )h hA w A u A w A s A s A u w H −  =  −  +  −    ‖ ‖ ‖ ‖ ‖ ‖               (8) 

and 

1
0

1 1

2 2
( )

( ) min ( )h hw H
A s u A w u

 
 − =  −‖ ‖ ‖ ‖                   (9) 

From (9) we obtain 
1 1

2 2 22 2
,( ) ( )

h

h h h NC K
K

A s u A s u
T




 −   − = ‖ ‖ ‖ ‖                              (10) 

Also, by Riesz representation theorem applied on the auxiliary Hilbert space, for all 1
0( )v H   we have 

1
1 2
0

1 1 1

2 2 2

( ): 1

sup ( , ),

H A

A v A v A

 



   =

 =  

‖ ‖

‖ ‖                     (11) 

which together with the Equation (7) gives 

1
1 2
0

1 1 1

2 2 2

( ): 1

( ) sup ( ( ), )

H A

A u s A u s A

 



   =

 − =  − 

‖ ‖

‖ ‖  

1
1 2
0

1 1

2 2

( ): 1

sup ( ( ), ).h

H A

A u u A

 



   =

=  − 

‖ ‖

              (12) 

Let 1
0( )H   . Using the weak formulation (4) we have 

1 1 1 1

2 2 2 2( ), ( , ) ( , )( )h hA u u A f A u A   −  = −    

then adding and subtracting 
1 1

2 2,( )hA A 
−

  and using the Green identity, we obtain 



 
  

 

 
1 1 1 1 1

2 2 2 2 2( ), ( , ) , .( ) ( )h h h hA u u A f A u A A  
−

 −  = −   −  + s s                      (13) 

The Cauchy-Schwarz inequality gives 
1 1 1 1 1 1

2 2 2 2 2 2,( )
h

h h h h K K
K

A u A A A u A A
T

 
− −



−  +    + s s‖ ‖ ‖ ‖  

1

2
,

h

F K K
K

A
T

 


=  ‖ ‖                       (14) 

Let Kj  denote the average value of j  over element K . From Poincaré’s inequality and the properties of the 

permeability tensor we obtain 
1

2
1

2
,

K
K

AK

h
A

C

  



−  ‖ ‖ ‖ ‖  

which, together the weak flux equilibrium property and the Cauchy-Schwarz inequality gives 

( , ) ( , )
h

h h K
K

f f
T

   


−   = −    

( , )
h

h K K
K

f
T

  


= −   −  

1

2
1

2
,

h

K
h K K

K

AK

h
f A

C
T

 




 −    ‖ ‖ ‖ ‖             (15) 
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Combining (12), (13), (14), (15) and the Cauchy-Schwarz inequality we get 
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The desired inequality is obtained by combining equation (8) by setting .w u=  and equation (10). 

For the 1H -conforming finite element discretization applied to the problem (1), the non-conformity estimator is 

null, therefore the estimator of Theorem 2 reduces to the following: Letu and hu be the solutions of (4) and (5) 

respectively, then 
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4.4 Effectivity index 

To evaluate the accuracy of the error estimator under study, the effectivity index is defined as follows: 
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5 hp -ADAPTIVE SCHEME 

For problems with smooth and sufficiently regular solutions, p -refinement is known to achieve exponential 

convergence rates of the error with respect to the number of degrees of freedom. However, in regions exhibiting 
irregularities such as high gradients, abrupt oscillations, or singularities, p -refinement is less efficient when compared 

to h -refinement (Ainsworth and Oden, 2011; Mitchell and McClain, 2011). The combination of h  and p -refinement 

using an appropriate strategy can result in efficient meshes for the complete range of problems. 

In this study, when an element K  is selected for refinement, it undergoes either h -adaptivity or p -adaptivity 

exclusively, this decision is guided by a regularity-based strategy, whereby elements in regions with predicted 
singularities or low regularity are h -refined, and those in smooth regions are p -refined. 

A priori knowledge of the location of point singularities is utilized in problems with re-entrant corners or changes of 

coefficients. This knowledge informs the initial mesh (
0

0

hT ) design, placing singularity points as nodes. Consequently, 

during the adaptive phase, elements possessing a vertex at a singularity are always h -refined. 
The hp -adaptive algorithm we employ adheres to a well-known iterative paradigm, where each iteration comprises 

the following modules (see, e.g., Daniel et al. (2018) and Demkowicz et al. (1985)): 

SOLVE ESTIMATE MARK REFINE REGULARIZE.→ → → →        (17) 
 
In terms of finite element spaces, the Algorithm 17 requires as input the initial conforming hp -finite element space 

0

0h
U p  (defined by mesh 

0

0

hT  and polynomial-degree distribution 0p ), the maximum number of iterations 1N + , 

threshold parameters 1 2,t t , r , the tolerance Tol  and where applicable, the prescribed singularity coordinates. Each 

iteration indexed by i , where 0 i N  , receives a conforming hp -finite element space i

ih
U p , and yield as output a 

numerical solution, 
ihu , of the conforming hp -finite element formulation: Find i

i i
h h
u U p  such that 

, , ,( ) ( )
ih

A u v f v  =                         (18) 

i

ih
v U p  ; as well as a conforming hp -finite element space 1

1

i

ih
U p +

+

, to be used in the next iteration. 

 

Algorithm 1: hp - Adaptive algorithm  

Input: Initial mesh T
0

0
h

, initial polynomial-degree distribution 0p , threshold parameters 1 2,t t , r , tolerance Tol , 

number of iterations 1N + , prescribed singularity coordinates (if applicable). 

Output: 1H -conforming discrete solution Nu  

1 Initialize mesh T T
0

0
h

 

2 Initialize polynomial- degree distribution 0p p  

3 for 0i =  to N  do 

4    Solve: Compute the FEM solution hu  on mesh T  with polynomial degrees p  

5    Estimate: Calculate a posteriori error estimates ,R Kh , ,F Kh  for each element TK  

6    Mark: Mark elements for h  or p  refinement based on local a posteriori error estimates and, if applicable, a priori 

singularity locations 

7    Refine: Apply h - or p -refinement to marked elements to obtain new mesh T  and update polynomial degrees p  

8    Regularize: Regularize the mesh, enforcing the two on one constraint 



 
  

 

 
The hp -adaptivity process is encapsulated in Algorithm 1, and the five associated modules are comprehensively 

described in the following parts of this section. 
 
5.1 Module SOLVE 

Receives the mesh T
i

i
h

 and an associated polynomial-degree distribution ip , and returns the solution 
ih
u  of 

discrete formulation (18). 

5.2 Module ESTIMATE 

This module take as input T
i

i
h

, ip  and the solution 
ih
u  of (18), and outputs the two type collection of a posteriori 

local error estimates: ,{ } i
hi

R K K T



 and ,{ } i

hi
F K K T




. These local error estimates are computed corresponding to the 

definition outlined in Theorem 2 using the reconstructed equilibrated flux σ
ih

. In accordance with the procedure 

specified in Definition 4, this equilibrated flux is computed using 
ihu  and expressed as the sum of local reconstructions 

(on patches) employing mixed finite element formulations. Such a mixed formulation utilizes hp -adaptive spaces: for a 

given element 
i

i
h

K T , 1( )
Kp
KRT +

 is chosen if K  is quadrilateral, whereas 1( )
Kp
KBDM +

 is employed if K  is 

triangular. The construction of hp -adaptive finite element spaces for mixed formulations is described in Devloo et al. 

(2016). 

5.3 Module MARK 

The module MARK receives the benchmark parameters: 1 2,  ,  ; satisfying 2 10 1     and 0  , the 

tolerance Tol , the prescribed singularity coordinates (when provided) and the collections of a posteriori local error 

estimates 
,{ } i

hi
R K K


T

 and 
,{ } i

hi
F K K


T

. It return two disjoint subsets of 
ihT , Ref iH  and Ref iP , where the first collect 

the elements that were selected for h -refinement and the second the elements that were selected for p -refinement. 

The regularity parameter   was introduced inspired by the property indicating that the convergence rate of the 

data oscillation is higher than that of the flux error Ern and Vohralík (2015). 
 

Algorithm 2: Module Mark 

Input: Error estimates ,{ } i
hi

R K K
h

T
, ,{ } i

hi
F K K

h
T

; threshold parameters 1 2,t t , r , Tol  

Output: Set of marked elements for h -refinement Ref iH  and for p -refinement Ref iP  

1:  Set Ref :iH , Ref :iP  

2:  forall i
hK T  such that ,F K Tolh >  do 

3:     if K  has a vertex at the singularity then 

4:        Insert K  into Ref iH  

5:     else if , 1 ,max
hF K K F KT    and , ,RK F K   then 

6:        Insert K  into Ref iH  

7:     else if , 2 ,max
hF K K F KT    or , ,RK F K   

8:        Insert K  into Ref iP  

9:     else 

10:       Element K  is not selected for either h -refinement or p -refinement 

11:    end 
12:  end 

 
Elements with a singularity at a vertex are prioritized for h -refinement; otherwise, threshold values 

1 20.5, 0.3 = = , 0.05r =  and 810Tol -= , are employed to categorize the locally estimated errors within the range 



 
  

 

 

from Tol  up to the maximum estimated flux error, ,max
hK F KhT . Neither h  nor p  refinement is performed on mesh 

elements whose estimated flux errors ( ,F K ) are less than Tol . Details are in Algorithm 2. 

5.4 Module REFINE 

The module REFINE takes as input the disjoint sets of marked elements for h -refinement Ref iH  and for p -

refinement Ref iP . This one return the mesh 
1

1

i

i
h

T
+

+  and his polynomial-degree distribution 1i+p  to be used in the next 

iteration of the adaptive cycle. 
The h -refinement of an element, whether triangular or quadrilateral, involves subdividing it into four sub-elements 

by pairwise connecting the midpoints of the element edges. Consequently, the children elements are geometrically 
similar to their parents, therefore, they have the same shape regularity quality as their father. 

h -Refinement is applied to each element of Ref iH . As a result, a new mesh 
1

1

i

i
h +

+T  is obtained. In mesh 
1

1

i

i
h +

+T  new 

hanging nodes may appear and/or some hanging nodes of mesh 
i

i
h

T  may no longer be hanging nodes of 
1

1

i

i
h +

+T . 

The p -refinement increases an element's polynomial degree by one. However, for practical purposes, it is well 

known that a maximum polynomial degree can be set (Mitchell, 2015). In this work, we set this maximum degree to ten. 

Consequently, an element is p -refined only if its current polynomial degree does not exceed nine. Being ( ) i
hi

i
i K K
pp

T
=  

the polynomial degree distribution of the mesh 
i

i

hT , the polynomial degree distribution 1i+p  for the mesh 
1

1

i

i

h +

+T  is done 

as follows: 1 1i i
K Kp p+ = +  for all 

1

1Ref
i

i
i h

K P T
+

+   such that 9i
Kp  , and elements that were not selected for h -

refinement or p -refinement retain their polynomial degree. Furthermore, elements obtained by h -refinement preserve 

the polynomial degree of the parent element. 

5.5 Module REGULARIZE 

Smoothing of the polynomial degree distribution is performed by increasing by one the polynomial degree 

of every element that has a neighboring element connected by an edge or part of an edge, whose polynomial degree 
is greater by two or more. Furthermore, similarly to Demkowicz et al. (1985) and Oliari et al. (2024), mesh smoothing is 
performed in two steps: (i) Refine all elements with any neighboring element refined twice as much as itself. (ii) Refine 
all elements surrounded by three or more neighboring elements refined more than itself. 

5.6 Sequence of nested hp finite element spaces 

Let us recall that, apart from the initial mesh, the meshes produced through the adaptive process are not necessarily 

conforming, meaning they may contain hanging nodes. The sequence of 1H -conforming finite element spaces ( )P

0

i

ih
i

U

generated in the hp -adaptive process, forms a nested sequence: 

1

1

PP +

+
 ii

i ih h
U U ,  0i  

This nesting property is an extension of the one established for conforming triangular meshes in Daniel et al. (2018). It is 

fundamentally due to two reasons: (i) the sequence ( )
0i

i
h

i
T  is hierarchical, meaning that for every 

1

1

i

i

h
K

+

+
T  there 

exists a unique parent element T
i

i

h
K  such that K K ; and (ii) the polynomial degree does not decrease on any 

element, i.e., for every 
1

1

i

i

h
K

+

+
 T and its corresponding parent element 

i

i

h
KT , the inequality 

1ii
K K
p p

+
  holds. 

6 NUMERICAL EXPERIMENTATION OF THE hp-ADAPTIVE ALGORITHM PERFORMANCE 

This section reports the outcomes of numerical experiments for the hp -adaptive refinement scheme proposed in 

Section 5. The adaptive process is guided by two types of error estimators, namely the flux estimator and residual 
estimator, as outlined in Theorem 2, both relying on the flux reconstruction methodology detailed in Section 4.2. Five 
benchmark problems with known analytical solutions were employed to assess the algorithm’s performance, some of 



 
  

 

 
these suggested in Mitchell (2013) to test adaptive refinement methods. Additionally, we evaluate the accuracy of the 
error estimators through the computation of the effectivity index. 

6.1. Adaptive process initialization 

The benchmark problems chosen for this study are set on either the square domain 1 1,1 1,1  or the 

L-shaped domain        2 1,1 1,1 \ 0,1 1,0 = −  −  − . For every numerical experiment, the initial meshes are designated 

as 
0hT . For problems on the square domain, the adaptive process initiates with a uniform quadrilateral mesh of sixteen 

square elements or a uniform triangular mesh of thirty-two elements, as can be seen in Figure 4. Similarly, for L-shaped 
domain problems, uniform initial meshes are employed, as shown in Figure 5. 

For each of the five test cases, regardless of mesh type, whether quadrilateral (Quad) or triangular (Tri), the threshold 

parameters for the hp -adaptivity algorithm were set as follows: 1 20.5, 0.3, 0.05t t r= = = and tolerance 810 .Tol -=

Furthermore, the initial mesh’s polynomial degree distribution was uniformly set to one. 

                    

Figure 4: Initial meshes for the domain 1 1,1 1,1 : Uniform quadrilateral mesh (left) and uniform triangular mesh 

(right). 

                     

Figure 5: Initial meshes for the L-shaped domain 2W : Uniform quadrilateral mesh (left) and uniform triangular mesh (right). 

 

6.2 Smooth Behavior 

Consider the boundary valued problem (1) defined on domain 1W , with source term f  computed from the 

exact solution 

( ) ( ) ( ), sin sinu x y x y =  

With Adefined as the unitary tensor. This problem has a solution with low variability without abrupt changes, see Figure 
6. 

This test case is employed to exhibit the numerical behavior of the estimator under a purely p -refinement context, 

as well as to investigate the hp -adaptive algorithm’s performance when h  -refinement is unnecessary. 

 



 
  

 

 

           

u                              u                            u  

Figure 6: Solution with moderate behavior. 
 

6.2.1 Asymptotic exactness of the error estimator under p-refinement 

With the uniform quadrilateral and uniform triangular meshes fixed, as displayed in Figure 4, and an 

initial polynomial degree distribution uniformly set to one, we applied successive uniform p -refinements until a 

uniform polynomial degree nine distribution was obtained. Figure 7 illustrates the convergence histories of the energy 
error and the effectivity index for both mesh types. These results highlight the asymptotic exactness of the error estimator 
when subjected to uniform p -refinement. 

 

Figure 7: Problem with solution of moderate behavior: Evolution of the true error (left) and effectivity index (right) under 
uniform p  -refinement with a fixed mesh. 

6.2.2 hp-Adaptivity for the problem with solution of smooth behavior 

Figure 8 displays the results of applying the adaptive algorithm to solve the problem with a smooth 
analytical solution, using both quadrilateral and triangular meshes. For both mesh configurations, the initial mesh, 

initial polynomial degree distribution, and adaptive algorithm parameter values were detailed in Section 6.1. 
The adaptive algorithm identified that h -refinement was not required, and during each iteration, was 

performed only p -refinement on all mesh elements, leading to a final geometric mesh identical to the initial one, 

and yielding a final polynomial degree distribution uniformly set to 9. In Figure 8, the convergence histories of the hp -

adaptive scheme (nine iterations) are contrasted with those of uniform h -refinement under constant polynomial orders 

( )1 2p p= =and , including their respective effectivity indices. 



 
  

 

 

 
Figure 8: Problem with moderate behavior solution: Convergence performance under hp -adaptivity scheme in 

contrast to uniform h -refinement with fixed polynomial degrees ( )1 2p p= =and  (left), and the corresponding 

effectivity indices (right). 
 
6.3. Sharp Gaussian 

Consider the boundary valued problem (1) on domain 1W , where A  represents the unitary tensor and the 

source term f  is computed from the exact solution 

( ) ( )( ) ( )2 210002 2, 1 1
− +

= − −
x y

u x y x y e  

The solution to the problem is smooth, but presents a sharp peak in the center of the domain, see Figure 9.  

This problem is used to exhibit the ability of the hp -adaptive algorithm to detect and concentrate h -refinement 

in small regions where abrupt variations occur, as well as to demonstrate the ability to properly alternate between h  
and p  refinement. 

 

    
u                                u                               u  

Figure 9: Solution with a peak. 
 
6.3.1. hp-Adaptivity for the problem with solution featuring a sharp peak 

The adaptive process was initiated with the configuration specified in Section 6.1 Throughout the 14 iterations of 

the adaptive process, the hp -adaptive algorithm effectively alternated between h -refinement and p -refinement, 

thereby attaining optimal convergence behavior. In Figure 10, the convergence histories of the hp -adaptive scheme are 

contrasted with those of uniform h -refinement under constant polynomial orders ( )1 2p p= =and , including their 

respective effectivity indices. Figure 11 shows the distribution, by element, of the estimated flux errors for meshes 
2 6 11

,h h hT T Tand . Figure 12 shows the distribution of polynomial degrees for the aforementioned meshes. 



 
  

 

 

 
Figure 10: Problem with an analytical solution featuring a sharp peak: Convergence performance under hp -adaptivity 

scheme in contrast to uniform h -refinement with fixed polynomial degrees ( )1 2p p= =and  (left), and the 

corresponding effectivity indices (right). 
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Figure 11: hp -Adaptivity for problem with an analytical solution featuring a peak: Distribution of the estimated flux 

error by element, for the meshes 
2 6 11

,h h hT T Tand . 
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Figure 12: hp -Adaptivity for problem with a solution featuring a peak: Polynomial degree distribution for the meshes 

2 6 11
,h h hT T Tand . 



 
  

 

 
6.4. Steep wave 

Consider the boundary valued problem (1) on domain 1W , with A  defined as the unitary tensor and the 

source term f  is computed from the exact solution 

( ) ( ) ( ) ( )( )( )2 2 2 2, 0.4 1 1 arctan 5 3 10
2

u x y x y x y
 

= − − + − + 
 

 

The solution to the problem presents high gradients on a circumference centered on the origin of the 
coordinates, see Figure 13. 
This problem is used to exhibit the ability of the hp -adaptive algorithm to detect high gradients over a curve and 

concentrate h -refinement in the surroundings of this curve, as well as to demonstrate the ability to properly alternate 

between h  and p  refinement. 

6.4.1 hp-Adaptivity for the problem with solution featuring high gradients 

With the hp -adaptive process startup configuration set as described in Section 6.1. During the 14-step iterative 

procedure, the hp -adaptive algorithm dynamically selected between h  and p -refinement based on local error 

indicators, resulting in optimal convergence characteristic. In Figure 14, we contrast the convergence histories of the hp

-adaptive scheme with those of uniform h -refinement under constant polynomial orders ( )1 2p p= =and , including 

their respective effectivity indices. Figure 15 shows the distribution, by element, of the estimated flux errors for meshes
2 6 11

,h h hT T Tand . Figure 16 shows the distribution of polynomial degrees for the aforementioned meshes. 

     
u                              u                           u  

Figure 13: Solution featuring high gradients. 

 
Figure 14: hp -Adaptivity for the problem with an solution featuring high gradients: Convergence performance under 

hp -adaptivity scheme in contrast to uniform h -refinement with fixed polynomial degrees ( )1 2p p= =and  (left), 

and the corresponding effectivity indices (right). 
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Figure 15: hp -Adaptivity for the problem with solution featuring high gradients: Distribution of the estimated flux 

error by element, for the meshes 
2 6 11

,h h hT T Tand . 
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Figure 16: hp -Adaptivity for the problem with solution featuring high gradients: Polynomial degree distribution for the 

meshes 
2 6 11

,h h handT T T . 

 
6.5. Reentrant corner singularity 

Consider the boundary valued problem (1) on domain 2W , where A  is the unitary tensor and the source 

term f  is computed from the exact solution 

( )
2
3

2arctan
, cos cos sin

2 2 3

y
x y x

u x y r
 

   
       

=     
     

 

 

The solution to this problem display a singularity in the reentrant corner of its L-shaped domain, see Figure 17. 
We selected this benchmark problem to show the hp -adaptive algorithm’s performance in the presence of 

prescribed points of singularities and to test the estimator’s accuracy. 
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Figure 17: Solution with a singularity in the reentrant corner. 
 
6.5.1 hp-Adaptivity for the problem whose solution presents singularity in the reentrant corner 
 

With the adaptive process startup configuration set as described in Section 6.1. Throughout the 14 

iterations of the adaptive process, the hp -adaptive algorithm effectively alternated between h -refinement and p

-refinement, resulting in optimal convergence characteristics. In Figure 18, we contrast the convergence histories of the 

hp -adaptive scheme with those of uniform h -refinement under constant polynomial orders ( )1 and 2p p= = , including 

their respective effectivity indices. Figure 19 shows the distribution, by element, of the estimated flux errors for meshes 
2 6 11

,h h hT T Tand . Figure 20 shows the distribution of polynomial degrees for the aforementioned meshes. 

 
Figure 18: hp -Adaptivity for the problem with solution featuring a singularity: Convergence performance under 

adaptivity scheme in contrast to uniform h -refinement with fixed polynomial degrees ( )1 2p p= =and  (left), and the 

corresponding effectivity indices (right). 
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Figure 19: hp -Adaptivity for the problem with an analytical solution featuring a singularity: Distribution of the estimated 

flux error by element, for the meshes 2 6 11
,h h h andT T T . Meshes 6

hT  and 11
hT  are shown zoomed around the 

singularity, on 1 1 1 1 1
16 16 16 16 16

, , \ 0, and      1 1 1 1 1
512 512 512 512 512, , \ ,0− − −  respectively. 
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Figure 20: hp -Adaptivity for the problem with an analytical solution featuring a singularity: Distribution of the 

polynomial order p per element for the meshes 
2 6 11

, andh h hT T T . 

 
6.6. Contrasting permeability 

Consider the boundary valued problem (1) on 1W . In this case, A is a piecewise constant permeability 

tensor 

5 for , 0 , 0I x y or x y
A

I


=

otherwise
 

and the source term f  is computed from the exact solution 

( , ) cos cos cos( ) sin( )
2 2

( ) ( ) ( )x y
u x y r

 
   = +  

where 0.53544094560246l =  and, 



 
  

 

 

( )

( )
( ) ) (

( )

1.0000000000000000,0.44721359549995787 0 ,1 0,1

2.3333333333333326, 0.7453559924999296 1,0 0,1
,

0.5555555555555556, 0.9441175904999111 , 1,0 1,0

0.48148148148148173, 2.4017026

x

x

x
 

       
−  −  =
   −  −  −   

− −( ) ( )424997736 0,1 1,0x






   −  

 

We use this problem to assess the error estimator’s accuracy and the hp -adaptive algorithm’s performance in a 

context featuring a discontinuous permeability tensor and prescribed solution singularities. 

 

u      u      A u  

Figure 21: Solution of the problem with contrasting permeability. 

 

6.6.1 hp -Adaptivity for the problem with contrasting permeability 

The startup configuration for the adaptive process followed Section 6.1. Throughout the 14 iterations of the adaptive 

process, the hp -adaptive algorithm effectively alternated between h -refinement and p -refinement, thereby attaining 

optimal convergence behavior. We observe that, even though the adaptive meshes exhibit approximations with 
exponential convergence, the effectivity index does not converge to 1, see Figure 22 (right). It is the best result we could 
obtain for the presented reconstruction algorithm. 

Figure 22 contrast the convergence histories of the hp -adaptive scheme with those of uniform h -refinement under 

constant polynomial orders ( )1 2p p= =and , with accompanying effectivity indices (right). Figure 23 shows the 

distribution, by element, of the estimated flux errors for meshes 2 6 11
, andh h hT T T . Figure 24 shows the distribution of 

polynomial degrees for the aforementioned meshes. 

 

 

 

 

Figure 22: hp -Adaptivity for the problem with contrasting permeability: Convergence performance under hp - 

adaptivity scheme in contrast to uniform h -refinement with fixed polynomial degrees ( )1 2p p= =and  (left), and 

the corresponding effectivity indices (right). 
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Figure 23: hp -Adaptivity for the problem with contrasting permeability: Distribution of the estimated flux error by 

element, for the meshes 
2 6 11

,  h h handT T T . 
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Figure 24: hp -Adaptivity for the problem with contrasting permeability: Distribution of the polynomial order p  

for the meshes 
2 6 11

,  h h handT T T . 

7 DEPENDENCE ON PARAMETER VARIATIONS 

To assess the sensitivity of the hp -adaptive refinement strategy to the parameters 1 2,t t  and r , a total of nine 

numerical experiments were performed for each of the five model problems, The parameter values were systematically 

adjusted around the threshold values established in Section 6, as follows:  1 0.4, 0.6  ,  2 0.2, 0.4  , and

 0.03, 0.07p  . The results for the problem with a solution characterized by steep gradients concentrated along a 

circumference are shown in Figure 25. For the remaining model problems that were used in the Section 6, the 
convergence history and effectivity index plots demonstrated an even weaker dependence on parameter variations. 

 



 
  

 

 

 
Figure 25: Parameter sweep for the problem with solution featuring high gradients. 

 
The results of the sensitivity experiments conducted show that the adaptive refinement strategy, guided by the error 

estimator, exhibits consistency across different parameter values, ensuring its reliability without requiring fine-tuned 
parameter adjustments. 

8 CONCLUSIONS 

In this work an innovative hp -adaptive strategy is presented based on an a-posteriori error estimator derived from 

the Prager Synge theorem. The estimated error of each element is composed of two contributions: one error derived 
from the reconstructed flux and a second error due to the error of the divergence of the flux. Where the flux error and 

divergence error dominate, h -adaptivity is applied; otherwise, if either of these is low, p -adaptivity is chosen. The 

adaptive strategy is applied to a variety of numerical problems, demonstrating its robustness. In all problems that were 
studied exponential convergence was observed as a function of the number of degrees of freedom. 

The flux reconstruction is based on a local reconstruction. The reconstruction formulation has been extended to 

heterogeneous permeability. Also, the partition of unity function required for such reconstruction is built using the h -
irregular mesh. 
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