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Abstract

In this work we demonstrate the effectiveness of an a-posteriori error estimator based on the Prager Synge
theorem for a wide range of problems: smooth problem, problem with a steep gradient, problem with a
boundary condition induced singularity, problem with varying conductivity. A very simple but innovative
strategy is presented for deciding on 4 or p adaptivity. Exponential convergence rates were obtained for all

test problems. The reconstruction of H(div) compatible functions is applied to meshes with hanging nodes.

We believe this work represents an important step towards a cost effective hp -adaptive strategy with a
posteriori error estimation.
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1 INTRODUCTION

The convergence rate (in the energy norm) of traditional finite element approximations are suboptimal in the
presence of singularities. If prescribed accuracies are required, strongly graded meshes must be used resulting in a
substantial increase in the number of degrees of freedom of the global system of equations.

The /Ap -Finite Element Method ( 4ip -FEM) generalizes FEM by allowing independent adjustment of both mesh size

() and polynomial degree (p) within each element. Pioneering research by Babuska et al. (Gui and Babuska, 1986; Guo
and Babuska, 1986a,b) established that 4p -FEM achieves exponentially fast convergence when proper /p -adaptivity is

applied. This approach concentrates degrees of freedom in regions of interest by strategically combining localized /-
refinement (dividing elements into smaller ones) and p -enrichment (increasing the polynomial approximation order

within an element). In essence, Ap -adaptivity provides an efficient approach to decreasing the computational effort

involved in achieving high-resolution simulations.
Since then, various /p -adaptive strategy approaches have been proposed, primarily driven by localized a posteriori

error estimation metrics. For instance, works in Demkowicz et al. (2002) and Rachowicz et al. (2006) are based on
minimizing the global interpolation error, while approaches by Ainsworth and Senior (1998); Dorfler and Heuveline
(2007), and Heuveline and Rannacher (2003) rely on the local regularity of the exact solution, determined by solving
local boundary value problems. Furthermore, the approaches by Eibner and Melenk (2007) and Houston and Siili (2005)
are based on the analyticity estimate of the exact solution. Incorporating knowledge of the underlying physical behavior
of the problem enhances decision- making and can lead to effective /p -refinement efficiency (Ainsworth and Senior,

1999). For conforming Ap -FEM approximations in elliptic problems, in Mitchell and McClain (2014), several /p -adaptive

strategies are comprehensively summarized, and the results of numerical experiment designed to evaluate their
performance are presented.

A properly designed a posteriori error estimator provides effective information about the error in a specified norm
or in a functional of interest, both locally and globally. The Prager and Synge hypercircle method (Prager and Synge,
1947), originally developed for elasticity problems, detailed also in Synge (1957) and Bertrand et al. (2020), served as a
foundational inspiration for a posteriori error estimators that utilize equilibrated flux reconstruction in Galerkin
approximations for elliptic problems. However, Ladeveze and Leguillon (1983) pioneered this type of error estimation,
developing a local equilibrated flux reconstruction technique. By employing the partition of unity, their method allows
the construction of an equilibrated flux to be reduced to localized, vertex patch-based calculations. For computational
efficiency, patch-based reconstruction can be advantageously employed over global reconstruction techniques.

Unlike residual-based error estimators (Verfiirth, 2013), whose reliability constants are typically unknown and
problem-dependent, equilibrated flux a posteriori error estimators offer the distinct advantage of providing error upper
bounds with a constant of one. Both types of estimators satisfy local efficiency, meaning the error estimate also
represents local lower bounds of the error, up to a generic constant. Another appealing property of equilibrated flux a
posteriori error estimators (first revealed for Braess et al. (2009) in the conforming finite element setting) is that the
error estimator is polynomial-degree robustness. This signifies that the generic constant in the local error lower bound
is independent of the polynomial degree, depending solely on the shape-regularity parameter of the underlying mesh.
The polynomial-degree robustness does not hold for residual-based estimators, as shown by Melenk and Wohlmuth
(2001). Recent overviews providing insights into the state-of-the-art and perspectives concerning a posteriori error
estimation and adaptivity can be found in, e.g., Chamoin and Legoll (2023); Becker et al. (2024) and Bringmann et al.
(2024).

Vohralik et al. (Ern and Vohralik, 2015; Dolejsi et al., 2016) introduced a polynomial-degree-robust equilibrated flux
a posteriori error estimator. This estimator is applicable to conforming, non-conforming, discontinuous Galerkin, and
mixed finite element approximations within a unified framework for Poisson problems. Its design relies on the local
reconstruction of an equilibrated flux by solving patch-wise problems using a mixed finite element method. Furthermore,
Dolejsi et al. (2016) details numerical assessments of hp -adaptive strategies driven by this estimator, employing the

interior penalty Discontinuous Galerkin method. Building on these developments, Daniel et al. (2018) proposed an #p -

adaptive strategy for H' -conforming finite element approximations on conforming simplicial meshes, where the hp -

decision is made using two local primal solves on selected patches.
We have not identified any documented computational implementations of #Ap -adaptive algorithms in the

literature that are guided by the generic Vohralik et al. estimator and applied to H'-conforming finite element



approximations on meshes with hanging nodes. The computational implementation for this scenario inherently presents
challenges, including the maintenance of continuity at element interfaces and solving mixed finite element formulations
localized to patches, particularly on non-conforming meshes characterized by elements of various refinement levels and
a heterogeneous distribution of polynomial degrees.

In the present work, we focus on the diffusion problem

(A u) f,in

u 0, on

(1)

where Q< Zis a polygonal domain (open, bounded and connected set) with a Lipschitz boundary; Ais a symmetric

positive definite tensor, and piecewise constant with respect to the decomposition Q= UL, Qi , Where each subdomain

Q., i=1,..,n, is open and polygonal; and f € I* (Q) Our primary goal is to extend the generic error estimator from
Ern and Vohralik (2015) to address the diffusion problem (1) and to propose a simple, cost-effective Ap -adaptive
refinement strategy for H'-conforming Finite Element approximations on both quadrilateral and triangular meshes,
which may be non-conforming.

Broadly, % -adaptivity is employed for an element when its estimated residual and flux errors are both significant.
Meanwhile, p -adaptivity is chosen when the element’s estimated flux or residual error is low. When dealing with

problems featuring point singularities, prior knowledge of their locations dictates the so application of /4 -refinement to
elements directly contacting these singular points.

The structure of this manuscript is as follows. Section 3 extends specific constructs and properties, initially
developed for conforming meshes, to nonconforming mesh settings. Section 4 outlines the equilibrated flux
reconstruction and the a posteriori error estimator based on equilibrated flux, encompassing both conforming and
nonconforming meshes. The hp -adaptive refinement strategy proposed in this work is outlined in Section 5. Results

from numerical experiments on five benchmark problems are presented in Section 6. Section 7 explores the sensitivity
of the algorithm with respect to variations in its parameters. Finally, conclusions are provided in Section 8.

All numerical experiments were conducted with the assistance of the NeoPZ framework (Devloo, 1997), a multi-
purpose Finite Element platform developed entirely in C++ and built upon an object-oriented architectural design.

2 NOTATIONS AND PRELIMINARIES

Let 7, be a partition (triangular or quadrilateral mesh) of a polygonal domain 2 composed of closed

elements, generally denoted by K, whose interiors are pairwise disjoint. The coarseness of the mesh is represented by
the largest diameter across its elements, which is denoted by /4. We are interested in triangular or affine quadrilateral
meshes, without any limitations on the hanging sides and with a heterogeneous polynomial degree distribution.

The parametric (master) elements are K = {(x,y) 0<zr,y<Lz+y< 1} or K = {(z,y) t—1<z,9y< 1}

Given anelement K ,let z,, : K K be the standard geometric map.

The space of square integrable functions (Lebesgue space) is denoted by LQ(Q) = {f : fQ|f|2 dQ < © } and

equipped with the usual norm || || defined by ||f||2 Q f>d andinner product (f, g): IQ fgd€. The Sobolev space

of functions whose first-order weak derivatives are square-integrable
o' (Q):{veﬁ (Q): Dwel?(Q) Ve, |a| < 1}

is equipped with the semi norm ||l and norm ||||1 defined by |’U|i =fQ Vu-VudQ and ||v||f = ||v||2 + |v|f respectively.
2
Another space of interest is H(div,Q) = {q: qe[L2(Q)] ,V-qeLQ(Q)}. The geometric map induces

isomorphisms: f;(:Hl(K)%Hl(K), given by f;((v)zvo m]‘(l, and the well-known Piola’s transformation

f;(divz H(diV;K) —)H(diV;K) .



Foraninteger p 0, let » (K) (respectively, [7’; (K)) represent the space of polynomial functions of maximum
degree p ineach variable (respectively, of total degree p ) on the quadrilateral (respectively, triangular) master element
K . Henceforth, Sp (K) will represent » (K) or [72; (K) according to whether the master element is quadrilateral
or triangular, respectively.

Given a polynomial-degree distribution p = (pK )Ke pay for each element K e 7, , consider the polynomial
h

space
S (K)z{v:vzf}(v),veSpK(K)}

Pk
then the conforming hp-finite element space can now be defined as

7 ~{oe e (@), o5, (k). vK 7] nm(R)

Each space U,‘; is uniquely determined by a pair made up of mesh and polynomial-degree distribution, and reciprocally.
We consider two subspaces of H(div;K) , constituted of vector-valued polynomials. If K is quadrilateral,
it is considered the classical Raviart-Thomas spaces RTP (K), and if K is triangle, it is considered the classical
Brezzi-Douglas-Marini spaces BDMP(K), see Ervin (2012). Henceforth, let’s represent any of these classical spaces
with Mp (K) , depending on the type of master element involved. Also, be
_ . _ div
M, (K)= {v:v=7(v),veM,(K) |
For mixed finite element formulations, the following pair (primal and dual) /sp — adaptive spaces are also of interest:
P _ 2 .
VP =lve 2 (Q): o] _es, (K), VK <7}
and
MP ={v e H(diviQ): U‘KEMpK (K),VK e 7};}
It is well-established that properly balancing the H (div;Q)—L*(Q) pairs of mixed finite element spaces is of
critical importance (De Siqueira et al., 2013; Farias et al., 2017; Devloo et al., 2016).

3 TWO DIMENSIONAL NON-CONFORMAL MESHES

In the two-dimensional case, it is essential to recall that a node in a mesh is called a hanging node when it
belongs to the edge of a mesh element without coinciding with any of its vertices. A node not designated as
a hanging node is referred to as a free node. A mesh is conforming when it has no hanging nodes; otherwise,
it is said to be non-conforming. Equivalently, a mesh is conforming when the non-empty intersection of two
distinct elements results in a common node or edge.

In this and the subsequent sections, 7, denotes either a quadrilateral or triangular mesh, which may be

conforming or non-conforming.
Definition 1. The hat function associated with a free node a of 7, , is a continuous function
vt Q-

such that *

p belongs to S, (K) foreach K € 7, ,and it has avalue of 1 at node a and vanishes at all other

free nodes of 7, .
Since each function in S| (K), is uniquely determined by its values at the vertices of K, each free node of 7, has

a unique associated hat function. See Figures 1 and 3.
Definition 2. The patch, o, , associated with a free node a of 7, , is the collection of elements whose interior

is contained within the support of the hat function associated with that node.



Definition 2 is illustrated in Figures 1 and 2.
Definition 3. A mesh is k -irregular if it has at least one edge containing a number of k£ hanging nodes.

According to the above definition, a conformal mesh is a 0 -irregular mesh. Therefore, a conformal mesh is also
referred to as a regular mesh.

Higher values of k can result in patches with more complex structures, mainly an increase in the number of
elements they comprise, see Figures 1 and 2, which in practice implies greater computational complexity. Moreover,
experience has shown that the quality of the gradient reconstruction degrades when % >1 . For this reason, in this article,

we work with meshes that are up to 1-irregular.
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Figure 1: A patch associated to a node A in a O-irregular mesh (left) and its hat function (right).

Figure 2: Patch of node A in a 1-irregular mesh (left) and of node B in a 2-irregular mesh (right).
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Figure 3: Hat functions of the patches associated with nodes A (left) and B (right) of figure 2.

Lemma 1. (Partition unity property) Let '];Z be a mesh obtained in the i-th iteration by applying successive adaptive s —

refinements with arbitrary element selection in each iteration, starting from an initial conforming triangular or

guadrilateral mesh Th(o) , Where the i — refinement of an element consists of dividing it into four sub-elements using line



segments connecting the midpoints of its sides. Then, foreach 7 0, the sum of the hat functions corresponding to Th7

is equal to 1.
Proof. For the mesh ’Z'hZ , let \V, denote the set of free nodes, y® (where a e N, ) the respective hat function, and
S, = z w (the sum of all hat functions associated with Thi ).
aeN,; i
Due to the polynomial structure of the hat functions over each element of ’];l’, if S, assumes a constant value at all

vertices of the element K € 7, , then it holds the same value over the entire element.

The proof will proceed by induction on i. In the case i = 0, the property is satisfied due to the conforming nature of
the mesh.

Assume that S, =1 is true for some i =k, & 0. Note that Nk, c Nk+1' Foreach K 7TF ’];L’”l , it holds that

hy +1

vy ‘K =y, X forae N, and ( ‘K =0forae , .. - Consequently, we obtain
Sk+1|K = Z V/I?Jrl K = Z I//I?Jrl‘K = Sk|K =1 (3)
aeN,,, aeN,
Now, let's take K € h’”l hk and let b be avertex of this. If b € N, ,,, it holds that S, (b) = w},,(b) = 1. When
k+1 k

b is a hanging node of 7;1’”1 , it belong to boundary of some element of 7;;“ N 7;1]”1, and by (3) we also conclude that
k+1 k k+1

S,..(b) = 1.

4 EQUILIBRATED FLUX A POSTERIORI ERROR ESTIMATE

The weak primal formulation of problem (1) is given by: Find u < Hé(Q) such that
(4w v) (fv) VoeH\(Q (4)
and the discretized weak primal formulation of problem (1) is given by: Find u, € U} such that
(AVuh,Vvh) = (f,vh) Vv, € UP (5)
Any function o in H(div,Q) constructed from u, such that,
(V-o1), =(f1), VKeT,

we will call the reconstructed equilibrated flux.

4.1 The Generalized Prager-Synge identity
Theorem 1. Let u € Hé(Q) be the solution of (4) and o € H(div,Q) satisfying the equilibrium equation div o = f.

Then

1 1 1 1 1 1
||A2VU—A2V7)||2+||A20+A2VU||2=HA20’+A2V1)H2,
forall v e H)(Q).

Proof.
1 1 1 1

1 1 1 1 1 1
||A 20+A2V’UH2=HAQV’U—AQVUHQ + ||A 20+ A2Vu ||2 +2(A2VU—A2Vu,A 2¢J'+A?Vu)

1
In the previous equality, the third term on the right side is zero, since by property A2 is symmetric, and

[ @0 vu) () (42 0+ 42 vu)ao = [ (V- vu)(o+ AV0)d0 = (Vo Vuo s 470) = 0



The last equality is obtained by applying Green's theorem on H(Q2) x H(div,Q).

Taking v = u, and o = o, where u, is the solution of (5) and o, is any equilibrated flux reconstructed, a direct
application of Prager-Synge identity gives an a posteriori error estimator with constant one

1 1 1 1
||A2Vu_A2Vuh ||2£HA20-IL+A2vuh ||2

4.2 Flux reconstruction for conforming and nonconforming meshes
Let (M,,V,) € H(div,Q) x I*(Q) be a pair of mixed finite element spaces, and let M¢ and V,* denote their
respective restrictions to the patch w, . In addition, let )} be the set of free nodes of 7, , and their respective subsets

of interior nodes and border nodes V™ and V.

The following definition represents an extension of Definition 3.1 in Daniel et al (2018), formulated to enable
equilibrated flux reconstruction in the context of diffusion problems such as (1).

Definition 4 (Equilibrated flux reconstruction ¢, ) Let u; solve (5). For each @ ), prescribe ¢; My and 7,* V*

by solving
-1 a —=a a
(A gh’vh)wa (T}L ) vh)wa (wa uh’vh)wu A\ M}L

( §Z, 4y, )UJa (waf qu)a A Uy qp )wa ay V;za
with the spaces

a . . — int
A\ {Vh V,(w,):v, n, =0 on wa}, a V)

S}? : {Qh Sh(wa) : (qh’l)wa 0}7 a Vhint

A\ {vh V,(w,) v, n, Oon w, }, a
St S (w,)} a V"
Then, set
6, = Sy
a

Unlike the equilibrated flux reconstruction proposed in Dolejsi et al. (2016) and Daniel et al. (2018), which imposes
adjustments on both patch meshes and their corresponding polynomial degree distributions, our approach does not
require such local constraints.

4.3 A posteriori error estimate

The purpose of an a posteriori error estimates is to establish bounds on the error between the obtained numerical
approximation and the exact, yet unknown, solution. This computation is feasible in practice after the approximate
solution is available.

The following theorem is an extended version of Theorem 3.3 of Earn and Vohralik (2015) to problems with
heterogeneous permeability. The demonstration follows the same method as the original theorem’s proof, with
appropriate adjustments to handle the extended scope.

Theorem 2 Let u the solution of (4) and u, an arbitrary function in H (ZL ) Let s, be a potential reconstruction and

6, an equilibrated flux reconstruction. For any K € 7,, define the residual estimator by

Mrx = hK1 ||f_v'6h|

2
7Z'CA’K

K>



where C, , is the smallest eigenvalue of 4 on element K ; the flux estimator by

1 1
Nr x ::H A*Vu,+4 *o, ||K
and the non-conformity estimator by
1 1
M.k ::| | A*Vu, —A* Vs, ||1(
The following upper bound holds:
1 1
||A2 Vu—A4?Vu, ||2S Z (77F,K+77R,1<)2+ Z 77/%10,1(' (6)
KeT, KeT,
Proof. Consider the broken Sobolev space Hl(Th) equipped with the positive semidefinite H' -broken inner product
(AV-,V.), this induces an (auxiliary) inner product on H(l)(Q) , constituting an (auxiliary) Hilbert space. Then applying
the Riesz representation theorem to the functional defined on the auxiliary space (AVu,,-) : Hé(Q) — , there exist
one and only one s € H}(Q) such that
(AVs, Vo) = (AVu,,Vv) Vo e Hy(Q) (7)

The continuity of the defined functional is justified from the Cauchy-Schwarz inequality
1 1
| (AVu,, Vo) | < 42 Vu, 11 42V |

From Equation (7) we conclude that the function s — v, is orthogonal to Hé(Q) respect to positive semidefinite H'-

broken inner product. By this property we obtain

1 1 1 1 1 1
I A2Vw — A2V, I2=Il A2Vw—A2VsI? + 11 A2Vs— A2V, I Ywe Hy(Q) (8)
and

1 1
I A2V(s —u,) lI= minweH(l)(Q) A2 V(w —u,) I (9)
From (9) we obtain

1 1
I A2 V(s —u,) 1< 1l A2V(s, —u,) I*= z e i (10)

KE/Z;I

Also, by Riesz representation theorem applied on the auxiliary Hilbert space, for all v € Hé (Q) we have

1 1 1
I A2Vull = sup (A2 Vo, A2 V), (11)

1
peH}(Q): 1 42Vpl=1

which together with the Equation (7) gives
1 1 1
I A2V(u—s)ll = sup (A2V(u — s),A2 Vo)
1
peHL(Q): 11 42V pli=1
1 1
= sup (A2V(u - u,),A2 V). (12)

peHL(Q): 1 22V pli=1

Let ¢ € Hy(Q). Using the weak formulation (4) we have
1 1 1 1
(42V(u — w,), 42V ) = (£.0) - (A2Vu,, A2V p)
1 1

then adding and subtracting (A QO-h,AQV(p) and using the Green identity, we obtain



1 1 1 1 1
(A2V(u—u,),42Vp) = (f =V - 0,,0) — (42Vu, + A 20,, 42V ). (13)
The Cauchy-Schwarz inequality gives

1 1 1 1 1 1
A2V, + A720,,42Vp) < 3 I A2Vu, + A 20, Il I A2V I,
KG/Z;I
1

= > e 1 A2Vell, (14)
KeT,
Let ¢, denote the average value of ¢ over element K. From Poincaré’s inequality and the properties of the
permeability tensor we obtain
1

h st
I =gy I < —5— 1l A2Vp

2
ﬂCAJ(

which, together the weak flux equilibrium property and the Cauchy-Schwarz inequality gives

(f_v'o-},,7¢7) = Z (f_v'o-},,7¢7)[(

KeT,
= Z (f_v'ahv¢_¢K)K
KG,Z;T.
h 1
< S K foVeg, Il A2Vell, (15)
KeT, 2
7Z'CA’K

1

= > i I A2Volly
K<T,

Combining (12), (13), (14), (15) and the Cauchy-Schwarz inequality we get

2 Vu-91=( s {(7-Vo,.0) —(Aé Vi, e %Aéw)})?

peHL(Q): 1 A2V pli=1

<( s Y ek ) 1 A2V}

1 KeT,
peHL(Q): 1 A2Vpl=1 "

< Z (M e + 773,1()2

KeT,
The desired inequality is obtained by combining equation (8) by setting w = u. and equation (10).
For the H'-conforming finite element discretization applied to the problem (1), the non-conformity estimator is

null, therefore the estimator of Theorem 2 reduces to the following: Letw andu, be the solutions of (4) and (5)
respectively, then

1 1
| | A2Vu - A2 Vuy, | |2S Z (’7F,K + UR,K)Q (16)
KeT,

4.4 Effectivity index

To evaluate the accuracy of the error estimator under study, the effectivity index is defined as follows:



1

( Z (7p i + "R,K)Q )5

_ KeT,
oy = 1
|| A2Vu — A2 Vu, ||

5 hp -ADAPTIVE SCHEME

For problems with smooth and sufficiently regular solutions, p -refinement is known to achieve exponential
convergence rates of the error with respect to the number of degrees of freedom. However, in regions exhibiting
irregularities such as high gradients, abrupt oscillations, or singularities, p -refinement is less efficient when compared
to h-refinement (Ainsworth and Oden, 2011; Mitchell and McClain, 2011). The combination of 4 and p -refinement
using an appropriate strategy can result in efficient meshes for the complete range of problems.

In this study, when an element K is selected for refinement, it undergoes either A -adaptivity or p -adaptivity
exclusively, this decision is guided by a regularity-based strategy, whereby elements in regions with predicted
singularities or low regularity are 7 -refined, and those in smooth regions are p -refined.

A priori knowledge of the location of point singularities is utilized in problems with re-entrant corners or changes of
coefficients. This knowledge informs the initial mesh (’]71(? ) design, placing singularity points as nodes. Consequently,

during the adaptive phase, elements possessing a vertex at a singularity are always h-refined.

The hp-adaptive algorithm we employ adheres to a well-known iterative paradigm, where each iteration comprises
the following modules (see, e.g., Daniel et al. (2018) and Demkowicz et al. (1985)):

SOLVE — ESTIMATE — MARK — REFINE — REGULARIZE. (17)

In terms of finite element spaces, the Algorithm 17 requires as input the initial conforming hp -finite element space

UZ}“ (defined by mesh ’];13 and polynomial-degree distribution p), the maximum number of iterations N +1,
threshold parameters 7,,7,, p, the tolerance 7ol and where applicable, the prescribed singularity coordinates. Each

iteration indexed by i, where 0 <i < N, receives a conforming hp -finite element space Ul;l , and yield as output a
numerical solution, u, , of the conforming hp -finite element formulation: Find U,l:’ such that
(AVuhL,Vv) = (f, v), (18)

Vv e U;;'" ; as well as a conforming hp -finite element space U}I:”l , to be used in the next iteration.
i i+1

Algorithm 1: hp - Adaptive algorithm

Input: Initial mesh 7;72' initial polynomial-degree distribution p,, threshold parameters 7,,7,, p, tolerance Tol,

number of iterations IV + 1, prescribed singularity coordinates (if applicable).

Output: H'-conforming discrete solution Uy

1 Initialize mesh 7 Tho
0

2 Initialize polynomial- degree distribution p Py

sfori=0to N do
4 |Solve: Compute the FEM solution u#, on mesh 7 with polynomial degrees p

5 |Estimate: Calculate a posteriori error estimates 7, ;- , 71, , foreachelement K 7T

6 |Mark: Mark elements for i or p refinement based on local a posteriori error estimates and, if applicable, a priori
sirjgularity locations

7 |Refine: Apply h- or p -refinement to marked elements to obtain new mesh 7 and update polynomial degrees p
8 |Regularize: Regularize the mesh, enforcing the two on one constraint




The hp-adaptivity process is encapsulated in Algorithm 1, and the five associated modules are comprehensively
described in the following parts of this section.

5.1 Module SOLVE
Receives the mesh ’Z;f and an associated polynomial-degree distribution p,, and returns the solution v, of

discrete formulation (18).

5.2 Module ESTIMATE

This module take as input Thi , P, and the solution v, of (18), and outputs the two type collection of a posteriori

local error estimates: {”RK}KEW and {nFK}KGT, . These local error estimates are computed corresponding to the
’ h ’ I

definition outlined in Theorem 2 using the reconstructed equilibrated flux 6, . In accordance with the procedure

specified in Definition 4, this equilibrated flux is computed using u#, and expressed as the sum of local reconstructions
(on patches) employing mixed finite element formulations. Such a mixed formulation utilizes hp -adaptive spaces: for a

given element K e ’];j, R (K) is chosen if K is quadrilateral, whereas BDM,, ,(K) is employed if K is

TpK +1
triangular. The construction of hp-adaptive finite element spaces for mixed formulations is described in Devloo et al.
(2016).

5.3 Module MARK

The module MARK receives the benchmark parameters: 7,,7,, p; satisfying 0<7, <7, <1 and p>0, the
tolerance 7o/, the prescribed singularity coordinates (when provided) and the collections of a posteriori local error
estimates {UR,K}KET,; and {UF,K}KET,; It return two disjoint subsets of 7, , RefH; and Refl, where the first collect

1

the elements that were selected for / -refinement and the second the elements that were selected for p -refinement.
The regularity parameter p was introduced inspired by the property indicating that the convergence rate of the
data oscillation is higher than that of the flux error Ern and Vohralik (2015).

Algorithm 2: Module Mark

Input: Error estimates {nRJ(}K T {nFJ(}K T ; threshold parameters 7,,7,, p, Tol

Output: Set of marked elements for / -refinement RefH, and for p -refinement RefP,
1: Set RefH, : , RefP, :

2 forall K 7,/ suchthat 7, . > Tol do

3. if K has avertex at the singularity then

4 |Ingert K into RefH,

s elseif o > 7 MAX g7 p i and 7, ;- > pnp  then

6 | Inpert K into RefH,

7. elseif Mp g < T MAX g g Mg OF Mg i < Plip g

g | Ingert K into RefP,

9 els
10: E]ement K is not selected for either h-refinement or p -refinement
11: €en
12: end

Elements with a singularity at a vertex are prioritized for / -refinement; otherwise, threshold values

7,=0.5,7,=0.3, p = 0.05 and Tol = 1078, are employed to categorize the locally estimated errors within the range



from Tol up to the maximum estimated flux error, max, , 7 - Neither i nor p refinement is performed on mesh
h ’

elements whose estimated flux errors (77, . ) are less than 7ol . Details are in Algorithm 2.

5.4 Module REFINE
The module REFINE takes as input the disjoint sets of marked elements for / -refinement RefH, and for p -

to be used in the next

refinement RefP,. This one return the mesh ’]Z“ and his polynomial-degree distribution p,

i+1
iteration of the adaptive cycle.
The h-refinement of an element, whether triangular or quadrilateral, involves subdividing it into four sub-elements
by pairwise connecting the midpoints of the element edges. Consequently, the children elements are geometrically
similar to their parents, therefore, they have the same shape regularity quality as their father.

h -Refinement is applied to each element of RefH, . As a result, a new mesh T*! is obtained. In mesh 7" new

by by
hanging nodes may appear and/or some hanging nodes of mesh Thi may no longer be hanging nodes of ’Thi“ .

i i+1
The p -refinement increases an element's polynomial degree by one. However, for practical purposes, it is well

known that a maximum polynomial degree can be set (Mitchell, 2015). In this work, we set this maximum degree to ten.

Consequently, an elementis p -refined only if its current polynomial degree does not exceed nine. Being p, = (pé()KeT,
hy

the polynomial degree distribution of the mesh '];ll , the polynomial degree distribution p.,, for the mesh ’]Ztl is done

i+1
as follows: pi' = pjc +1 for all K € RefP, n7'*! such that pj, <9, and elements that were not selected for -

i+1

refinement or p -refinement retain their polynomial degree. Furthermore, elements obtained by / -refinement preserve
the polynomial degree of the parent element.

5.5 Module REGULARIZE

Smoothing of the polynomial degree distribution is performed by increasing by one the polynomial degree
of every element that has a neighboring element connected by an edge or part of an edge, whose polynomial degree
is greater by two or more. Furthermore, similarly to Demkowicz et al. (1985) and Oliari et al. (2024), mesh smoothing is

performed in two steps: (i) Refine all elements with any neighboring element refined twice as much as itself. (ii) Refine
all elements surrounded by three or more neighboring elements refined more than itself.

5.6 Sequence of nested hp finite element spaces
Let us recall that, apart from the initial mesh, the meshes produced through the adaptive process are not necessarily

conforming, meaning they may contain hanging nodes. The sequence of H' -conforming finite element spaces (U,]:" ) .
P>

generated in the hp -adaptive process, forms a nested sequence:
P,’ I)i+l .
Uhi c UhM , 1 0
This nesting property is an extension of the one established for conforming triangular meshes in Daniel et al. (2018). It is

. ‘ . . . . = i +1
fundamentally due to two reasons: (i) the sequence (Th’) o 8 hierarchical, meaning that for every K e 7;’2 " there
) is .

i+1

exists a unique parent element K e77 such that K c K ; and (ii) the polynomial degree does not decrease on any

. ) -
and its corresponding parent element K e Thl , the inequality pj, < pg holds.

i+1 i

. = i+1
element, i.e., forevery K e 7;

6 NUMERICAL EXPERIMENTATION OF THE hp-ADAPTIVE ALGORITHM PERFORMANCE

This section reports the outcomes of numerical experiments for the hp-adaptive refinement scheme proposed in
Section 5. The adaptive process is guided by two types of error estimators, namely the flux estimator and residual
estimator, as outlined in Theorem 2, both relying on the flux reconstruction methodology detailed in Section 4.2. Five
benchmark problems with known analytical solutions were employed to assess the algorithm’s performance, some of



these suggested in Mitchell (2013) to test adaptive refinement methods. Additionally, we evaluate the accuracy of the
error estimators through the computation of the effectivity index.

6.1. Adaptive process initialization

The benchmark problems chosen for this study are set on either the square domain | 1,1 1,1 orthe
L-shaped domain Q, =[-1,1] x [-1,1]\ [0,1] x [-1,0] . For every numerical experiment, the initial meshes are designated
as 7;0 . For problems on the square domain, the adaptive process initiates with a uniform quadrilateral mesh of sixteen

square elements or a uniform triangular mesh of thirty-two elements, as can be seen in Figure 4. Similarly, for L-shaped
domain problems, uniform initial meshes are employed, as shown in Figure 5.

For each of the five test cases, regardless of mesh type, whether quadrilateral (Quad) or triangular (Tri), the threshold
parameters for the hp -adaptivity algorithm were set as follows: 7, = 0.5, 7, = 0.3, p = 0.05 and tolerance T'ol = 1078,

Furthermore, the initial mesh’s polynomial degree distribution was uniformly set to one.

Figure 4: Initial meshes for the domain | L1 1,1 :Uniform quadrilateral mesh (left) and uniform triangular mesh

(right).

Figure 5: Initial meshes for the L-shaped domain QZ : Uniform quadrilateral mesh (left) and uniform triangular mesh (right).
6.2 Smooth Behavior
Consider the boundary valued problem (1) defined on domain (), , with source term f computed from the
exact solution
u(av,y) = sin(mz:)sin(ﬂy)

With A defined as the unitary tensor. This problem has a solution with low variability without abrupt changes, see Figure
6.

This test case is employed to exhibit the numerical behavior of the estimator under a purely p -refinement context,

as well as to investigate the Ap -adaptive algorithm’s performance when / -refinement is unnecessary.
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Figure 6: Solution with moderate behavior.

6.2.1 Asymptotic exactness of the error estimator under p-refinement
With the uniform quadrilateral and uniform triangular meshes fixed, as displayed in Figure 4, and an

initial polynomial degree distribution uniformly set to one, we applied successive uniform p -refinements until a
uniform polynomial degree nine distribution was obtained. Figure 7 illustrates the convergence histories of the energy
error and the effectivity index for both mesh types. These results highlight the asymptotic exactness of the error estimator
when subjected to uniform p -refinement.

10t F T 1.05 T T T T T T T T T
100} 1
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1 I | | L St T A pope
0 10 0 1 2 3 4 5 6 7 & 9 10
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Estimate
Qua: —@— True Error -®- Error Qua: —— Effect. Index
Estimate
Tri: -8- True Error -©- Frror Tri: -=- Effect. Index

Figure 7: Problem with solution of moderate behavior: Evolution of the true error (left) and effectivity index (right) under
uniform p -refinement with a fixed mesh.

6.2.2 hp-Adaptivity for the problem with solution of smooth behavior

Figure 8 displays the results of applying the adaptive algorithm to solve the problem with a smooth

analytical solution, using both quadrilateral and triangular meshes. For both mesh configurations, the initial mesh,
initial polynomial degree distribution, and adaptive algorithm parameter values were detailed in Section 6.1.

The adaptive algorithm identified that % -refinement was not required, and during each iteration, was

performed only p -refinement on all mesh elements, leading to a final geometric mesh identical to the initial one,
and yielding a final polynomial degree distribution uniformly set to 9. In Figure 8, the convergence histories of the hp -
adaptive scheme (nine iterations) are contrasted with those of uniform h -refinement under constant polynomial orders

(p =1and p:2>, including their respective effectivity indices.
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Figure 8: Problem with moderate behavior solution: Convergence performance under hp-adaptivity scheme in
contrast to uniform h -refinement with fixed polynomial degrees (p =1and p:2) (left), and the corresponding

effectivity indices (right).

6.3. Sharp Gaussian

Consider the boundary valued problem (1) on domain €2, , where A represents the unitary tensor and the
source term f is computed from the exact solution

_ 2ay?
u(x,y):(xz —1)(y2 B l)e 1000(x* +)?)
The solution to the problem is smooth, but presents a sharp peak in the center of the domain, see Figure 9.
This problem is used to exhibit the ability of the Zp -adaptive algorithm to detect and concentrate % -refinement

in small regions where abrupt variations occur, as well as to demonstrate the ability to properly alternate between A
and p refinement.

0 01 02 03 04 05 06 07 08 09 1
| | ) | | ) "
-— DO e ma———— ke

0 010203 040506070809 1 024 6 810121416182022242

Figure 9: Solution with a peak.

6.3.1. hp-Adaptivity for the problem with solution featuring a sharp peak

The adaptive process was initiated with the configuration specified in Section 6.1 Throughout the 14 iterations of
the adaptive process, the hp-adaptive algorithm effectively alternated between fh-refinement and p -refinement,
thereby attaining optimal convergence behavior. In Figure 10, the convergence histories of the hp-adaptive scheme are

contrasted with those of uniform h -refinement under constant polynomial orders (p =1and p=2) , including their
respective effectivity indices. Figure 11 shows the distribution, by element, of the estimated flux errors for meshes

2 6 11
7, , 7, and 7, .Figure 12 shows the distribution of polynomial degrees for the aforementioned meshes.
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Figure 10: Problem with an analytical solution featuring a sharp peak: Convergence performance under hp -adaptivity

scheme in contrast to uniform £ -refinement with fixed polynomial degrees (p =1and p:2) (left), and the

corresponding effectivity indices (right).
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6.4. Steep wave

Consider the boundary valued problem (1) on domain €2, , with A defined as the unitary tensor and the

source term f is computed from the exact solution

()= 04(1-2)(122)[ 5 sarctan(5(3-10(s7+17)))

The solution to the problem presents high gradients on a circumference centered on the origin of the
coordinates, see Figure 13.
This problem is used to exhibit the ability of the hp-adaptive algorithm to detect high gradients over a curve and

concentrate h-refinement in the surroundings of this curve, as well as to demonstrate the ability to properly alternate
between h and p refinement.

6.4.1 hp-Adaptivity for the problem with solution featuring high gradients

With the hp-adaptive process startup configuration set as described in Section 6.1. During the 14-step iterative
procedure, the hp-adaptive algorithm dynamically selected between h and p -refinement based on local error
indicators, resulting in optimal convergence characteristic. In Figure 14, we contrast the convergence histories of the /p

-adaptive scheme with those of uniform A -refinement under constant polynomial orders (p =1and p=2) , including

their respective effectivity indices. Figure 15 shows the distribution, by element, of the estimated flux errors for meshes

Thz , Thﬁ and ThH . Figure 16 shows the distribution of polynomial degrees for the aforementioned meshes.
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Figure 13: Solution featuring high gradients.
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Figure 14: hp -Adaptivity for the problem with an solution featuring high gradients: Convergence performance under
hp -adaptivity scheme in contrast to uniform A -refinement with fixed polynomial degrees (p =1and p:2) (left),

and the corresponding effectivity indices (right).
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6.5. Reentrant corner singularity

Consider the boundary valued problem (1) on domain €2, , where A is the unitary tensor and the source
term f is computed from the exact solution

2arctan %
T Ty y . T
u(x,y) =cos| — |cos| —= |r/3 sin| ————— 2
2 2

3

The solution to this problem display a singularity in the reentrant corner of its L-shaped domain, see Figure 17.
We selected this benchmark problem to show the #/p -adaptive algorithm’s performance in the presence of

prescribed points of singularities and to test the estimator’s accuracy.
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Figure 17: Solution with a singularity in the reentrant corner.
6.5.1 hp-Adaptivity for the problem whose solution presents singularity in the reentrant corner
With the adaptive process startup configuration set as described in Section 6.1. Throughout the 14

iterations of the adaptive process, the hp-adaptive algorithm effectively alternated between /% -refinementand p
-refinement, resulting in optimal convergence characteristics. In Figure 18, we contrast the convergence histories of the
hp -adaptive scheme with those of uniform # -refinement under constant polynomial orders (p =1and p=2), including

their respective effectivity indices. Figure 19 shows the distribution, by element, of the estimated flux errors for meshes

Thz , Thﬁ and Thn . Figure 20 shows the distribution of polynomial degrees for the aforementioned meshes.
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Figure 18: hp-Adaptivity for the problem with solution featuring a singularity: Convergence performance under
adaptivity scheme in contrast to uniform % -refinement with fixed polynomial degrees (p =1and p:2) (left), and the

corresponding effectivity indices (right).
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Figure 20: /ip -Adaptivity for the problem with an analytical solution featuring a singularity: Distribution of the
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polynomial order p per element for the meshes 7, , 7, and 7,

6.6. Contrasting permeability
Consider the boundary valued problem (1) on €2, . In this case, A is a piecewise constant permeability
tensor

4 5] forx,y Oorzy O
I otherwise

and the source term f is computed from the exact solution
u(z,y) = cos (?) cos (%)r}“ (a cos(10) + B sin(l@))

where A = 0.53544094560246 and,



(1.0000000000000000, 0.44721359549995787 ) ze[0,1]x[0,1]
| (2:3333333333333326,— 0.7453559924999296 ) ze[-1,0)x(0,1]
(a’ﬂ) - (0.5555555555555556,— 0.9441175904999111), ze [—1,0}[—1,0]
(-0.48148148148148173, - 2.4017026424997736)  w€(0,1]x[-1,0)

We use this problem to assess the error estimator’s accuracy and the hp-adaptive algorithm’s performance in a
context featuring a discontinuous permeability tensor and prescribed solution singularities.
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Figure 21: Solution of the problem with contrasting permeability.

6.6.1 /ip -Adaptivity for the problem with contrasting permeability

The startup configuration for the adaptive process followed Section 6.1. Throughout the 14 iterations of the adaptive
process, the hp-adaptive algorithm effectively alternated between h -refinement and p -refinement, thereby attaining
optimal convergence behavior. We observe that, even though the adaptive meshes exhibit approximations with
exponential convergence, the effectivity index does not converge to 1, see Figure 22 (right). It is the best result we could
obtain for the presented reconstruction algorithm.

Figure 22 contrast the convergence histories of the /p -adaptive scheme with those of uniform / -refinement under

constant polynomial orders (p =1and p:2), with accompanying effectivity indices (right). Figure 23 shows the
distribution, by element, of the estimated flux errors for meshes 7,>, 7,®and 7,'' . Figure 24 shows the distribution of
polynomial degrees for the aforementioned meshes.
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Figure 23: hp-Adaptivity for the problem with contrasting permeability: Distribution of the estimated flux error by
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Figure 24: hp-Adaptivity for the problem with contrasting permeability: Distribution of the polynomial order p
for the meshes 7}22 , 7,'16 and ZLH .

7 DEPENDENCE ON PARAMETER VARIATIONS

To assess the sensitivity of the hp-adaptive refinement strategy to the parameters 7, 7, and p, a total of nine
numerical experiments were performed for each of the five model problems, The parameter values were systematically
adjusted around the threshold values established in Section 6, as follows: 7 6{0.4, 0.6} ;T 6{0.2, 0.4}, and

€ {0.03, 0.07}. The results for the problem with a solution characterized by steep gradients concentrated along a

circumference are shown in Figure 25. For the remaining model problems that were used in the Section 6, the
convergence history and effectivity index plots demonstrated an even weaker dependence on parameter variations.
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Figure 25: Parameter sweep for the problem with solution featuring high gradients.

The results of the sensitivity experiments conducted show that the adaptive refinement strategy, guided by the error
estimator, exhibits consistency across different parameter values, ensuring its reliability without requiring fine-tuned
parameter adjustments.

8 CONCLUSIONS

In this work an innovative hp-adaptive strategy is presented based on an a-posteriori error estimator derived from
the Prager Synge theorem. The estimated error of each element is composed of two contributions: one error derived
from the reconstructed flux and a second error due to the error of the divergence of the flux. Where the flux error and
divergence error dominate, h-adaptivity is applied; otherwise, if either of these is low, p -adaptivity is chosen. The
adaptive strategy is applied to a variety of numerical problems, demonstrating its robustness. In all problems that were
studied exponential convergence was observed as a function of the number of degrees of freedom.

The flux reconstruction is based on a local reconstruction. The reconstruction formulation has been extended to
heterogeneous permeability. Also, the partition of unity function required for such reconstruction is built using the £ -
irregular mesh.
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