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Abstract 
This paper investigates the vibration attenuation performance of periodic foundations for surface structures. 
A numerical method is proposed, which considers one- or two-dimensional linear-elastic bodies under time-
harmonic external load and seismic excitation. These bodies are modeled via the Finite Elements Method, 
while their supporting soil is modeled as a homogeneous half-space via the Indirect Boundary Element 
Method. Coupling between the methods is obtained by imposing direct continuity and equilibrium conditions 
at the interface. Three different configurations of foundations are studied: 1) no foundation, 2) homogeneous 
foundation, and 3) sandwich foundation – two materials layered in an alternate fashion. Material properties 
and thickness of the layers are selected to induce prescribed bandgaps in the response of the structure. The 
results are presented in terms of data that can be directly applied in engineering practice. 
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1 INTRODUCTION 

In engineering applications, uncontrolled excessive vibration is something to be avoided as it can lead to structural 
fatigue, noise, and catastrophic failure. For vibration-sensitive structures, effective mechanisms to control excessive 
vibration levels are crucial. A popular method for mitigating vibration involves utilizing periodic foundations, which 
exploit the principles of wave propagation in periodic media to manage vibrations across a range of structures, including 
buildings, bridges, machinery, and electronic devices (Shi, Cheng and Xiang, 2014). Effective vibration isolation of 
structures can be achieved by carefully designing the periodicity profile and material properties of these foundations, 
which work by inducing bandgaps in the frequency response of the structure.  

The application of periodic foundations for structural vibration isolation has been intensively studied in recent years. 
Several studies have been carried out to validate the feasibility and efficiency of this isolation system. Xiang et al. (2012) 
proposed a new layered periodic foundation and showed that it can induce frequency bandgaps that effectively reduce 
vibrations in buildings, acting as a vibration isolator. Xiong et al. (2012) studied how periodic foundations can significantly 
reduce the dynamic response of structures under both vertical and longitudinal ground motion, offering a new view in 
civil engineering applications. Pu and Shi (2018) showed that a damped layered periodic foundation with more than one 
unit cell significantly improved the seismic performance of the structure under ground motion in different site conditions. 
However, the most significant, recent papers in the area of the present study were published by Jain et al. (2021) and 
Elshazly and Seylabi (2023), who studied the effectiveness of sandwiched layers of concrete and rubber in inducing 
bandgaps in the response of structures interacting with the soil and found that these foundations can be tuned to induce 
bandgaps at specific frequencies of excitation.  

The present paper reports on a study on the vibration attenuation performance of surface walls supported by 
sandwich foundations. In this paper, the term sandwich foundation is used to refer to a base interposed between the 
wall and its support, in which the base is made up of alternating layers of two different materials. A coupled method is 
used to describe the wall—soil system, which is modeled as a 2D, plane strain problem. Excitation is applied directly on 
the wall or impinges on the wall from seismic sources. The objective of the paper is to understand the effect of the 
sandwich foundation in the ground vibration attenuation performance of the wall. The paper shows selected numerical 
results on the attenuation performance of walls and foundations with different geometric and constitutive parameters. 

2 PROBLEM STATEMENT 

The problem consists of linear-elastic walls that are modeled as either one-dimensional or two-dimensional bodies 
of infinite length, height H, and width L (in the two-dimensional case).  A portion h of the height of the wall, referred to 
in this paper as “foundation,” can be made of one single material, or of alternating layers of two different materials. The 
different configurations for the wall and its foundation considered in this paper are (Fig. 1): (i) a homogeneous wall 
without a foundation, (ii) a homogeneous wall supported by a homogeneous foundation, that is, built with only one 
material, and (iii) homogeneous wall supported by a sandwich foundation, built with alternating layers of two different 
materials. 

 
(a)                                                                    (b) 

Figure 1: Configurations for (a) one- and (b) two-dimensional cases, in which light-gray and dark-gray represent different materials. 

 



  

The sandwich foundation is composed of n identical unit cells stacked on top of each other (Fig. 2). Each unit cell is 
divided into two halves, each made of one out of two different materials, resulting in a foundation consisting of 2n 
alternating layers of these materials. 

These structures are analyzed under three distinct support scenarios (Fig. 3). In Case A, the wall is supported by a 
rigid base and loaded from the top with a time-harmonic vertical (z-direction) loading with unit magnitude. In Case B, 
the wall is loaded from the top and rests on a flexible soil. In Case C, the wall is subjected to excitation in the form of a 
time-harmonic plane Rayleigh wave of unit magnitude propagating through the soil and impinging onto the wall—soil 
system from its left side. The objective is to determine which configuration promotes the greatest reduction in the wall’s 
vibration amplitude. 

 
Figure 2: Unit cells of the sandwich foundation. 

 
        (a)                                             (b)                                               (c) 

Figure 3: (a) case A, (b) case B, and (c) case C considered in the analysis. 

3 FORMULATION 

The main goal of this analysis is to understand the behavior of two-dimensional walls, in view of its potential for 
direct application in engineering practice. However, in order to provide a deeper understanding of the effect of sandwich 
foundation in the response of the wall, a one-dimensional model for this system is also considered. This 1D model enables 
one to isolate the effect of lateral energy dissipation that occurs in the 2D problem due to the Poisson effect. Both 1D 
and 2D models of the wall are formulated according to the classical Finite Element Method (FEM), in view of the finite 
dimensions of the wall and its linear-elastic behavior. For Case C, in which wall—soil interaction is considered, an Indirect 
Boundary Element Method (IBEM) formulation is used for the soil, so that radiation conditions and wave propagation 
features of the soil can be represented accurately. Additionally, a Spectral Element Method (SEM) formulation is used 
for the 1D wall, so that the behavior the wall as an infinitely periodic body can be first understood. This information can 
then be used to assess the minimum number n of unit cells that are necessary for the foundation of the 1D wall to behave 
as a bandgap-inducing metamaterial. 

3.1 SEM model 

The Spectral Element Method model of the one-dimensional wall problem is obtained after deriving the equation 
of motion for a spectral element, expressed as 𝐃b𝐪 =  𝐅, in which 𝐃b is the dynamic stiffness matrices of one-
dimensional bar elements, 𝐪 is the vector of nodal displacements and 𝐅 is the vector of nodal forces. Doyle (1997) 
provides the dynamic stiffness matrix for bar elements at a given frequency ω as 



  

𝑫𝑏 =
𝑖𝑘𝐸𝐴

1 − 𝑒−𝑖2𝑘𝐿
[1 + 𝑒−𝑖2𝑘𝐿 −2𝑒−𝑖𝑘𝐿

−2𝑒−𝑖𝑘𝐿 1 + 𝑒−𝑖2𝑘𝐿], (1) 

in which E, A and L represent the Young’s modulus, cross-sectional area, and length of the element, respectively, 𝑘 =

𝜔√𝜌/𝐸, in which ρ is the mass density, and i = √−1. For a periodic structure, defined as the infinite repetition of its 

constituent cells, the Bloch-Floquet condition is enforced (Bloch, 1929; Floquet, 1883), which can be expressed as 

{q𝑟 −F𝑟}T = e−i𝑘𝑥ℎ𝑢𝑐{q𝑙 F𝑙}T, (2) 

where 𝑘𝑥 is the wavenumber, and 𝑞𝑗  and 𝐹𝑗 are the displacements and forces vectors at the j-side of the unit cell, with l 

and r denoting the left and right sides of the cell, respectively. Rearranging the dynamic stiffness matrix into the transfer 
matrix form as presented by Nobrega et al. (2016), and substituting the resulting expression, leads to the following 
eigenvalue problem, which allows the computation of the wavenumbers for the periodic one-dimensional wall: 

𝐓 = [
−𝐃𝑙𝑟

−1𝐃𝑙𝑙 −𝐃𝑙𝑟
−1

𝐃𝑟𝑙 − 𝐃𝑟𝑟𝐃𝑙𝑟
−1𝐃𝑙𝑙 −𝐃𝑟𝑟𝐃𝑙𝑟

−1],     𝐃b = [
𝐃𝑙𝑙 𝐃𝑙𝑟

𝐃𝑟𝑙 𝐃𝑟𝑟
], (3) 

𝐓{𝐪𝑙 𝐅𝑙}T = e−i𝑘𝑥ℎ𝑢𝑐{𝐪𝑙 𝐅𝑙}T. (4) 

3.2 FEM model 

For the one-dimensional FEM model of the wall under vertical loads, the wall is described as an assembly of two-
noded, one-dimensional finite bar elements with one displacement degree of freedom per node, the stiffness and mass 
matrices of which are given by (Rao, 2011) 

𝐊bar =
𝐸𝐴

ℎ𝑒
[

1 −1
−1 1

],     𝐌bar =
𝜌𝐴ℎ𝑒

6
[
2 1
1 2

], (5) 

in which, ℎ𝑒 is the length of the element.  
In the 2D case, the wall is discretized using four-noded, isoparametric, linear-elastic quadrilateral finite elements, 

each having two degrees of freedom per node. Elemental stiffness and mass matrices 𝐊𝑒 and 𝐌𝑒 are given by (Bathe, 
2006) 

𝐊𝑒 = ∫ ∫ 𝐁T
1

−1

1

−1

𝐂𝐁|𝐉|𝑑ξ𝑑η,    𝐌𝑒 = 𝜌 ∫ ∫ 𝐍T
1

−1

1

−1

𝐍|𝐉|𝑑ξ𝑑η, (6) 

in which ξ and η are natural coordinates describing the space in which the finite elements are formulated, B is the strain 

matrix, C is the constitutive matrix, J is the Jacobian operator transforming between the natural (, ) space and the 
physical (x,z) space, and N is the matrix of shape functions. The dynamic stiffness matrix for the wall is assembled from 
𝐊𝑒 and 𝐌𝑒 according to 𝐊̅ = 𝐊g − 𝜔2𝐌g, in which 𝐊𝑔 and 𝐌𝑔  are global stiffness and mass matrices, respectively, and 

 is the frequency of excitation. The equation of motion for the wall is given by 𝐊̅𝐮 = 𝐟, in which u and f are the nodal 
displacement and force vectors, respectively. 

3.3 IBEM-FEM coupling 

In the 2D wall—soil contact problem, the soil is modeled as a two-dimensional, isotropic, homogeneous half-space, 
the response of which is obtained via the discretization of its free surface in terms of constant boundary elements. 
Rajapakse et al. (1991) derived solutions for the boundary elements describing this medium, which are given by 

 

𝑢𝑥𝑥 = −
2

𝜋𝑐44𝛿
∫

1

𝑅
(𝜂3𝜔̅1e𝛿𝜉1𝑧 − 𝜂4𝜔̅2e𝛿𝜉2𝑧) cos(𝛿𝜁𝑥)

∞

0
dζ, (7a) 

𝑢𝑧𝑥 = −
2i

𝜋𝑐44𝛿
∫

1

𝑅
(𝜂3𝜔̅1e𝛿𝜉1𝑧 − 𝜂4𝜔̅2e𝛿𝜉2𝑧) sin(𝛿𝜁𝑥)

∞

0
dζ, (7b) 

𝑢𝑥𝑧 =
2i

𝜋𝑐44𝛿
∫

1

𝑅
(𝜂2𝜔̅1e𝛿𝜉1𝑧 − 𝜂1𝜔̅2e𝛿𝜉2𝑧) sin(𝛿𝜁𝑥)

∞

0
dζ, and (7c) 

𝑢𝑧𝑧 =
2

𝜋𝑐44𝛿
∫

1

𝑅
(𝜂2𝜔̅1e𝛿𝜉1𝑧 − 𝜂1𝜔̅2e𝛿𝜉2𝑧) cos(𝛿𝜁𝑥)

∞

0
dζ, (7d) 

 



  

in which 𝑢𝑖𝑗 denotes displacement in the i-direction due to loads in the j-direction, in which 𝜁 = 𝜆/𝛿, 𝛼 = 𝑐33/𝑐44, 𝛽 =

𝑐11/𝑐44, 𝜅 = 1 + 𝑐13/𝑐44, 𝛿2 = 𝜌𝜔2/𝑐44, 𝑅 =
𝜂1𝜂3−𝜂2𝜂4

sin(𝛿𝜁𝑎)
𝜁, 𝜉1,2

2 = (𝛾𝜁2 − 1 − 𝛼 ± √Φ)/(2𝛼), 

Φ = (𝛾𝜁2 − 1 − 𝛼)2 − 4𝛼[𝛽𝜁4 − (1 + 𝛽)𝜁2 + 1], 𝛾 = 1 + 𝛼𝛽 − 𝜅2, 𝜔̅1,2 = (𝛼𝜉1,2
2 − 𝜁2 + 1)/(−𝑖𝜅𝜁𝜉1,2),                       

𝜂1,2 = −𝜉1,2𝜔̅1,2 + 𝑖𝜁, 𝜂3,4 = (𝜅 − 1)𝑖𝜁𝜔̅2,1 − 𝛼𝜉2,1, and 𝑐11 = 𝑐33 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)
 , 𝑐12 = 𝑐13 =

𝐸𝜈

(1+𝜈)(1−2𝜈)
 , 𝑐44 =

𝐸

2(1+𝜈)
,  

in which E is the Young’s modulus,  is the Poisson ratio, and  is the mass density.  
The coupling between the soil and the wall can be represented by the inclusion of interface forces 𝐟s, which arise at 

the bottom of the wall due to the presence of the soil. The modified equation of motion for the nodes at the interface 
can be expressed as 𝐊̅′𝐮′ = 𝐟′ − 𝐟s, in which 𝐊̅′, 𝐮′ and 𝐟′ are, respectively, the dynamic stiffness matrix, and vectors of 
nodal displacement and forces of the interface nodes. The distribution of contact forces 𝐟s experienced by the nodes of 
the structure must be in equilibrium with the contact tractions experienced by the soil at the interface. This distribution 
is unknown, and can be approximated by piece-wise constant fictitious contact tractions 𝐭s, which are also unknown. The 
equilibrium condition between 𝐟s and 𝐭s can be stated as 𝐟s = 𝐀𝐭s, in which A is a purely geometric transformation 
matrix. The equation of motion for the nodes at the wall—soil interface can be rewritten as 

𝐊̅′𝐮′ + 𝐀𝐭s = 𝐟′. (8) 

For the case in which the wall—soil system is subjected to Rayleigh wave excitation, the excitation is described in 
Equation 8 in terms of nodal displacements at the wall—soil interface u’. In this case, the presence of the wall on the soil 

surface causes incident seismic waves 𝐬(𝑖) to be partially scattered into a scatter component 𝐬(𝑠), so that the resulting 
displacement ws at the interface is the sum of these two parts (Fairweather et al., 2003): 

𝐰s = 𝐬(𝐢) + 𝐬(𝐬). (9) 

The scattered portion can be expressed in terms of the contact tractions 𝐭s as 

𝐬(𝐬) = 𝐔𝐭s, (10) 

in which U is the influence matrix of the soil, the terms of which are described in Equation 7. Displacements 𝐰s can also 
be expressed in terms of the structural displacement 𝐮′ at the interface as 

𝐰s = 𝐃𝐮′, (11) 

in which D is a purely geometric transformation matrix. Substituting Equations 11 and 10 into Equation 9 yields 

𝐃𝐮′ − 𝐔𝐭s = 𝐬(𝐢). (12) 

The reader is referred to Carneiro et al. (2022) for a full expression of matrices A and D. The continuity condition 
expressed by Equation 12 assumes perfectly bonded contact between the wall and the soil, which is a reasonable 
consideration for this problem. Expanding this equation of motion of the wall—soil interface to all nodes of the wall 
results in the equation of motion for the wall—soil system: 
 

[
𝐊̅ [

𝟎
𝐀

]

[𝐃 𝟎] −𝐔
] {

𝐮
𝐭s

} = {
𝟎

𝐬(𝐢)}. (13) 

4 NUMERICAL RESULTS 

This section presents and discusses results obtained with the numerical models described in the previous sections. 
For the sake of these discussions, the origin of the x—z coordinate system is placed so that z=0 corresponds to the free 
surface of the soil, and x=0 is aligned with the center line of the wall. The results in this section are presented in terms of 
the vertical displacements 𝑢𝑧(𝜔) at different points of the body of the wall. The quantity 𝑢𝑧1(𝜔) denotes the 
displacement of the upper side of the first unit cell, at the bottom of the wall (at a vertical distance 𝑧 = ℎ/(2𝑛) from the 
base, in which n=5 is the number of unit cells used in the sandwich foundation). This point is selected as a representative 
point in Case A (Figure 3a) because, in this case, the displacements at z=0 are zero, due to the rigid base on which the 
wall is installed.  

Table 1 list the properties of the materials used in the analysis. These values were chosen because of their 
applicability in engineering practice. All results consider walls with height H=4m, width L=1m, and foundations with h=1m 
when applicable. 



  

Table 1 Material properties.  

Material 𝒄𝒔 [m/s] 𝒄𝒑 [m/s] 𝝆 [kg/m³] 𝑬 [MPa] 𝝂𝟏 [-] 

Concrete - - 2,400 3.00E10 0.2 

Rubber2 - - 1,300 1.37E5 0.21 

Soil 250 1,470 1,945 - - 
1 Some results consider varying values for  for the rubber material. 

4.1 Case A: rigid base 

Figure 4 shows the frequency response of the 1D models considered in Case A. All results in this section are 
computed at z=h/(2n). The curve marked with an “SEM” label indicates the response of the infinitely periodic 1D body 
obtained via the SEM method, while the curve marked with the “FEM” label indicates the response of the 1D walls with 
sandwich foundations. A convergence analysis was performed for various numbers of unit cells, indicating that n=5 unit 
cells is sufficient to represent the period behavior exhibited by the infinitely periodic model. Figure 4b shows the 
dispersion diagram obtained with the SEM model, with gray bands indicating the frequency bands in which energy is 
barred from propagating in the structure, due to the periodicity of the cells. These gray bands were reproduced in Figure 
4a as well, illustrating the effect of the bandgaps in the vibration magnitude of both models. The discrepancy between 
the two curves comes from the fact that the FEM model is not infinitely periodic, but rather a finite body with a sandwich 
foundation that exhibits nearly period behavior. The main conclusion from these results is that a relatively small finite 
number of cells in the sandwich foundation is sufficient to impart bandgap-inducing properties to the system. 

 
(a)                                                                                          (b) 

Figure 4: (a) Displacement of the 1D wall and (b) dispersion diagram for the 1D wall in configuration (iii) considering a concrete wall 
with a concrete-rubber sandwich foundation. 

Figure 5 shows a comparison between the response of the 1D wall supported by a rigid base (Case A) in all three 
configurations (i), (ii) and (iii) (Figure 1b). The inclusion of a homogeneous foundation has a significant effect in the 
response of the system, but bandgaps in the frequency response of the wall are only observed when the sandwich 
foundation is introduced. 



  

 

Figure 5: Response of 1D walls considering concrete wall with a concrete-rubber sandwich foundation. 

The main difference between the one- and two-dimensional model of this problem is the ability of the latter to 
undergo transverse deformation when subjected to the vertical loading, because of the Poisson effect. Figure 6 shows 
results for the 2D wall when various values of Poisson ratio are considered for the rubber material used in the sandwich 
foundation. In this analysis, the Poisson’s ratio of the concrete is fixed at 𝜈 = 0.2, while the Poisson’s ratio of rubber 
varies from 𝜈 = 0 to 𝜈 = 0.4. These results show that the Poisson’s ratio of the rubber layers directly influences the 

response of the wall. These results show that larger values of  hinder the ability of the sandwich foundation to induce 
bandgaps, which is connected to the transverse energy dissipation resulting from the greater Poisson effect in this case. 

When =0, no energy dissipation in the transverse direction is present, and the sandwich foundation can induce 
bandgaps in the vertical response of the wall. 

 

Figure 6: Poisson’s ratio effect for the 2D concrete wall with a concrete-rubber sandwich foundation. 

4.2 Case B: flexible soil 

Figure 7 shows the frequency responses for the 2D models considered in Case B, in which the wall is supported by 
a flexible soil (Fig. 3b). These results are computed at z=0 for cases (i), (ii) and (iii) shown in Fig. 1b. Figure 7a shows that 
the presence of the soil has a significant damping effect in the response of the system in cases (i) and (ii), in which the 
sandwich foundation is not present. This can be seen comparing the “No foundation” case (i) from Fig. 7a with that from 
Fig. 5. This is due to the geometric damping properties of the soil as an unbounded, energy-dissipating medium.  

 



  

 
(a)                                                                                          (b) 

Figure 7: vertical responses at 𝑧 = 0 for 2D walls considering concrete wall and concrete-rubber foundation. 

Figure 7b, however, shows that the inclusion of the flexible soil has a negligible effect in the response of the system 
when a sandwich foundation is considered. This figure compares the cases in which the wall with sandwich foundation 
is supported by a rigid base with that in which the wall is supported by the soil. This is understandable, since the vibration 
originating from the top of the wall in this Case B (Fig. 3b) is mostly filtered out by the sandwich foundation before it 
reaches the soil, rendering ineffective the geometric damping properties of the soil. 

4.3 Case C: seismic excitation 

Figure 8 shows the frequency responses of 2D walls supported by the soil, in the case in which the system is under 
Rayleigh wave excitation. Figures 8a and 8b show respectively the vibration measured at the bottom and at the top of 
the wall. In this case, vibration propagates from the bottom to the top of the wall, crossing through the homogeneous 
or periodic foundation. Figure 8 shows that vibration attenuation occurs at the top of the wall, after the vibratory energy 
passes through the foundation. Together with the results from Fig. 7b, this supports the idea that the foundation, 
especially the periodic foundation, works as a filter, isolating the structure from its surroundings, regardless of each side 
of this filter vibratory energy is applied. Figure 8a shows that the inclusion of the foundation causes the wall to behave 
as if the wall did not exist, from the point of view of its effect on the propagation of the Rayleigh wave. This hinders even 
the positive ground vibration attenuation effects that homogeneous walls have been found to provide (Carneiro et al., 
2022). 

 

 
(a)                                                                                          (b) 

Figure 8: Vertical response at (a) 𝑧 = 0 and (b) 𝑧 = 𝐻 for 2D walls in configuration (iii) considering a concrete wall with concrete-
rubber foundation. 

Finally, we assessed the ability of the wall to reduce vibration of a point behind it, i.e., x>0. This is important for 
engineering practice, because the wall could be used to protect sensitive target structures by being installed between 
the source of vibration and the target structure.  In this paper, this performance is evaluated by measuring the vibration 



  

magnitude in the z-direction at a point P located 20 m behind the wall (𝑥 = 20 m, 𝑧 = 0). Results at the point where the 
wall is installed (𝑥 = 0, 𝑧 = 0) are included for comparison. The vibration attenuation performance of the wall is 
measured according to the insertion loss, defined as 

𝐼𝐿𝑧𝑅 = 20log10 |
𝑢𝑧𝑅

(𝑏)(ω)

𝑢𝑧𝑅
(𝑎)

(ω)
|, (26) 

in which 𝑢𝑧𝑅
(𝑏)(ω) and 𝑢𝑧𝑅

(𝑎)(ω) indicate the displacement of P in z-direction without and with the presence of the wall in 
the system, respectively. Positive values of insertion loss indicate that the wall induces attenuation of the ground 
vibration, while negative values indicate that the wall leads to vibration amplification. 

Figure 9 shows the insertion loss provided by 2D concrete walls in the three configurations listed in Fig. 1. The results 
indicate that walls with homogeneous and sandwich foundations have a negligible effect on the vibration propagated 
through the soil, both at the installation point and at point P. In contrast, walls without foundations produce significant 
attenuation of the vibration, reaching up to 35 dB (Figure 18a), which is consistent with Carneiro et al. (2022). Once again, 
this indicates that the sandwich foundation acts as a filter for the vibration coming from the soil, thereby cancelling the 
attenuation mechanisms of the wall as a local resonator. 

 

 
(a)                                                                                          (b) 

Figure 9: Vertical insertion loss at (a) 𝑥 = 0 and (b) 𝑥 = 20 measured at the soil surface for 2D walls considering concrete wall with 
concrete-rubber foundation. 

4 CONCLUSIONS 

This paper presented a study on the ground vibration attenuation performance of surface walls supported by 
sandwich foundations. The analysis considered homogeneous walls without foundation, as well as walls with 
homogeneous and sandwich foundations, supported either by a rigid base or by flexible soil. The results indicated that 
an SEM analysis of 1D models can accurately predict the frequency bands where significant attenuation occurs in the 
responses of 2D structures, provided that the Poisson’s ratio of the materials of the 2D structures is sufficiently small. 
More importantly, sandwich foundations were found to act as a filter, isolating the dynamic response of the wall from 
that of the soil. This effect is beneficial for soil vibration when the excitation originates from the structure, but it hinders 
the attenuation of soil vibration when the excitation comes from the soil, as it prevents the wall from functioning as an 
effective vibration attenuator. 
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