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Abstract

While the robust adaptive control algorithm based on the Youla—Kucera (Y-K) parameterization can
effectively suppress multiple unknown and time-varying narrow-band disturbances, its performance strongly
depends on an accurate secondary path model. In many practical systems, such models are difficult or
impossible to obtain, which limits the applicability of existing Y—K-based approaches. To overcome this
limitation, this paper proposes a direct feedback robust adaptive micro-vibration control algorithm that does
not require an accurate secondary path model. The proposed controller combines the Y-K parameterization
framework with a newly developed variable step-size least mean square (VSSLMS) algorithm for real-time
parameter adaptation. The algorithm preserves closed-loop stability while improving convergence and
robustness against time-varying multi-frequency disturbances. Experimental validation using an active micro-
vibration control platform demonstrates that the proposed method achieves over 60% improvement in
steady-state vibration suppression compared with the conventional FXLMS and Y-K + LMS algorithms,
particularly under dual-frequency disturbances with spectral and amplitude variations.These results confirm
that the presented approach provides a model-independent and highly robust solution for active suppression
of micro-vibrations in precision satellite systems.
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1 INTRODUCTION

When a satellite operates in space, it is subjected to disturbances from the space environment as well as its own
rotating parts. These disturbances induce micro-vibrations in the structure, often characterized by multiple frequency
bands (LEE D-O et al., 2016). In the case of high-resolution satellites equipped with precise optical payloads, these micro-
vibrations can lead to optical axis jitter and image motion, ultimately resulting in a reduction in image resolution (LI L et
al., 2021). Consequently, their impact cannot be underestimated. Hence, the suppression of micro-vibrations within
satellite structures has emerged as a crucial research area and a prominent topic of interest among scholars (MENG G et
al., 2015).

Currently, active control or a combination of active and passive control are often used to suppress structural micro-
vibrations. Regarding active control methods, current research covers most of the content in control theory (WANG L et
al., 2020; SUN Y et al., 2018).

.Thus, the micro-vibration response caused by the
disturbance is counteracted under the premise of stable closed-loop system (WANG J et al., 2017).

In this case, adaptive control methods have obvious advantages.
As a useful tool in adaptive control field,

The advantage of this method is that the parameter estimation of the internal mode of the
disturbance can be implemented without changing the closed-loop poles of control system. In the 1990s, the
development of the Y-K parameterization method and its applications in system identification, adaptive control, and
nonlinear systems was systematically described (ANDERSON B D 0, 1998). In the following 20 years, Y-K parameterization
method was gradually introduced into the field of active vibration & noise control (AVNC), and achieved satisfactory
control performance (LANDAU | D, 2020).

Currently, the Y-K parameterization method is employed to address two primary challenges in AVNC. The first
challenge revolves around mitigating the positive feedback effect in feedforward AVNC systems. In a feedforward AVNC
system, the reference signal is influenced by the actuator's output. Thus, a positive feedback loop is formed. The presence
of positive feedback loop makes the original control system no longer a pure feedforward system, which affects the
stability of the system. The Y-K parameterization method was first used for the positive feedback effect problem in
feedforward vibration active control (AVC) system and achieved a better control effect (LANDAU I D, 2010). Subsequently,
Landau's team did a lot of meaningful work on this issue including the application of different forms of filters, different
adaptive parameters, different filtering algorithms. The applicability and superiority of Y-K parameterization method for
the stability problems with feedforward system caused by positive feedback loop is demonstrated through stability
analysis and experimental verification (LANDAU I D et al., 2020; LANDAU I D et al., 2010; LANDAU I D et al., 2011a; LANDAU I D et
al., 2012; LANDAU I D et al., 2013; TUDOR-BOGDAN AIRIMITOAIE I D L et al., 2013; LANDAU I D et al., 2019a; LANDAU | D et al., 2019b;
LANDAU I D et al., 2021).

The suppression of multi-frequency time-varying and unknown narrowband disturbance is another fundamental
issue in the field of ANVC (LANDAU I D et al., 2011b). The feedback control system has a good suppression effect for narrow
band disturbance while its control effect is limited by the Bode integral of the output sensitivity function and ‘waterbed’
effect. At this moment, it is usually used by cooperating with feedforward control system or by establishing internal
model of the disturbance (SILVA A C et al., 2013). However, it is difficult to obtain or even find the disturbance source in
many applications for placing a reference sensor. The problem of internal model establishment of the disturbance is
solved by Y-K parameterization method successfully without changing the poles of the system. It achieves better control
results in suppression with unknown and time-varying multi-frequency narrow-band disturbances (WANG J et al., 2017;
LANDAU I D et al., 2016; CHEN X et al., 2015; LANDAU | D et al., 2015; VAU B et al., 2021). As far as the feedback adaptive control
method based on Y-K parameterization is concerned, most of the current research design parameters of the central
robust controller with a known mathematical model of the secondary path. For example, pole placement method
(LANDAU I D et al., 2015; AIRIMITOAIE T-B et al., 2018), H-infinity (QIAN F F et al., 2019), and optimal control method (WU Z et
al., 2019) were used.

In recent years, several studies have extended the Y-K parameterization method toward more challenging scenarios
with uncertain or unknown secondary paths. Regarding the problem of suppressing unknown tilt disturbances in image
stabilization systems, an adaptive Y-K scheme has been proposed and applied in previous studies (Ruan et al. 2022), which
further validates the applicability of this framework to optical platforms.Subsequent research explored combinations of



Y-K with robust controller synthesis; for instance, an LQG/LTR-based Youla parameterized adaptive controller was
proposed (HAICHUN D et al,2024) to enhance robustness under plant uncertainties.

However, the design of a central robust controller requires an accurate mathematical model of the secondary path
in satellite, which puts forward corresponding precision requirements for system identification. Moreover, there are also
some instances where the model of the secondary path is unknown. In such cases, the control effect of the central robust
controller based on a model may weaken or even fail.

This paper addresses the challenge of active control of multi-frequency time-varying or unknown narrowband
disturbances when an accurate model of the secondary path cannot be obtained. To overcome this challenge, an active
micro-vibration control experimental system is constructed for implementing an adaptive control algorithm. Taking the
advantages of the Y-K parameterization method in active vibration control, this paper proposes a feedback adaptive
control algorithm with PID method as the central robust controller to cope with multi-frequency narrow-band
disturbances when the secondary path model is not easy to obtain. At the same time, a new variable step size least mean
square (VSSLMS) method is proposed as the parameter adaptive algorithm (PAA) to get a better convergence effect.
Finally, the vibration suppression effect of the proposed feedback adaptive control algorithm is verified through real-
time experiments.

2 Experimental system

To validate the efficacy of the AVC algorithm, a nano-positioning unit based piezoelectric stacks is used. This unit
was designed to replicate disturbances and actively suppress micro-vibrations along the x, y, and z axes. Figure 1 depicts
an illustration of the aforementioned unit, comprising several components: a baseplate, a vibration excitation module, a
vibration suppression module, a working stage, and three displacement sensors.

Figure 1 Schematic representation of the nano-positioning unit

Functional modules and components of the nano-positioning unit:



(a) Baseplate securely mounted on an optical vibration isolation platform to shield the nano-position unit from
external disturbances.
(b) Vibration excitation module designed for emulating external micro-vibration disturbances.
(c) Vibration suppression module equipped to counteract micro-vibrations using the control algorithm.
(d) Displacement sensors employed to collect vibration error data.
(e) Working stage, with the goal of achieving vibration suppression.
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Figure 3 Image of the AVC experimental system

3 Feedback AVC algorithm based on Y-K parameterization method
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Figure 4 Block diagram of the feedback Youla-Kucera adaptive control algorithm

Figure 4 depicts the block diagram of the feedback AVC algorithm based on Y-K parameterization given in this paper.
Equation (1) and (2) respectively represent G and H , which denote the primary path and secondary path of the system.
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In Equations (1) and (2), d; and d,, respectively denote the integer delays of the primary path and secondary path. d(¢)
represents the micro-vibration response of the primary path when excited by disturbance D(¢) (a known model
structure), while y(¢#) denotes the micro-vibration response of the secondary path. The system residual signal is

represented as e(t). 4o(¢™"), Bo(q™'), Au(q"") and Bu(g™') are used to represent the estimated values of 4,(¢™"),
B,(q"), 4,(¢™") and B,(g""). In this paper, it is assumed that the accurate model of 4.,(¢™"), B,(¢™"), 4,(¢”") and
B,(q"') can be obtained through system identification. It means Ac(¢')=4,(q"") , Bao(g)=B,(q") ,
An(qY=4,(q"),Bu(q¢"")=B,(¢"") . Within the feedback control system illustrated in Figure 4, the central robust

controller designed by the PID method, composed of polynomials R (¢™') and S,(¢™'), is denoted as N,(¢'). Details
are given in Equations (7) to (9).
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Equations (10) to (11) display the input e(¢) and output u(¢) of the feedback controller when the central robust
controller is used in isolation.

o 4B,
e(t)=d() e u(t) (10)
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As presented in Equation (12), the closed-loop pole distribution of the system is determined by the characteristic
polynomial P,(¢™").
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As presented in equation (13), when the Y-K parameterization filter is introduced into the feedback system, the
input signal to O(¢™") is w(t).
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Equation (14) displays the optimal value of Q(g™") for the Y-K parameterization filter in FIR form.
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At this stage, O(¢™') and the central robust controller N,(¢™') combine to create a new feedback robust adaptive

controller K(g™"), as presented in Equation (15).

Sy R(qil)
K(q ) (15)

Among them,
R(g =R, (g )+4,(g)HOq") (16)
S(g)=S,(g)~q "B, (g7HO(q™") (17)

Equation (18) displays the characteristic polynomial P(¢™") of the new closed-loop system.

Pqg)=A4,(qg")S,(g")+q B, (g R, (g ") (18)

It can be observed that the closed-loop pole distribution remains unchanged with the addition of the Y-K
parameterization filter O(¢™") .
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In the actual system, the model of system identification deviates from the actual system. Therefore, it is necessary
to adjust the Y-K parameterization filter with a PAA to match the real-time disturbance model. Through the

implementation of the PAA, the parameter estimate Q(¢,q”') replaces O(¢™'), as shown in Equation (20).

0t,q) =0y () +0,(g ™ +0, (g™ +---+ Q,,Hq "™ (20)
Equation (21) depicts the feedback robust adaptive controller.
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The Equation (22) defines the adaptive error of the system.
e(t)= e, ) —e(?t) (22)

eQ(t) denotes the error signal obtained based on the filter estimates O(¢™') in the parameter adaptation process,

as depicted in equation (23).

So(a )= "By (g HOtg ™)

23
P (®) (23)

eQ(t):

Equation (19) and (23) are incorporated into Equation (22) to derive the adaptive error of the system.
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Construct parameter vectors as shown in Equations (25) and (26).
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Construct the system observation vector as shown in Equations (27) and (28).
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In the above equations,
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Thus, the system adaptive error can be formulated as follows:

£(H)=[0" -0 (O1& () (30)

Because the system perturbation is unknown, the optimal parameter vector Q is also uncertain. In order to find the

parameter vector estimate Q(¢) that is closest to @, it can be translated into finding a @(¢) that minimizes the cost
function shown in equation (31):

Since the system perturbation remains unknown, the optimal parameter vector, denoted as [@ ) is likewise uncertain.
To determine the parameter vector estimate, denoted as @, that best approximates @/, the problem can be reframed
as seeking a |@| that minimizes the cost function as described in equation (31):

J(Q,1) =€ (1) (31)

The gradient of the squared instantaneous error of the system, specifically the Least Mean Square (LMS) algorithm,
has been chosen as the parameter adaptive algorithm.

ng(¢)=@= 260 (1) (32)
o0(?)

The parameter update iteration for Q(¢) can be obtained as shown in Equation (33). Equation (33) shows that the

controller parameters are updated proportionally to the instantaneous error and input correlation, meaning that the
algorithm self-adjusts to suppress vibration more effectively as the system learns the disturbance characteristics.
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(33)

When the Y-K parameter filter is set to its optimal value, the system error becomes zero. Consequently, the system
adaptive error £(¢) can be replaced by the real-time error value eQ(t) , Which is measured by the sensor in the actual

system. Therefore, Equation (33) can be expressed as:
QD=0 + pe, (D' (1) (34)

In Equation (34), u is the step size factor for the iteration of the adaptive parameter matrix.
In summary, the expression of the feedback AVC control algorithm is presented in Equations (35) to (37).
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The LMS algorithm, a commonly used parametric adaptive algorithm, offers the advantage of simplicity and
robustness. However, the presence of its fixed step factor creates a trade-off between con



After the introduction of the VSSLMS algorithm concept, scholars have proposed various forms of VSSLMS
algorithms to enhance algorithm performance by adjusting the step size in real-time. One approach in VSSLMS algorithm
involves adjusting the real-time step size by setting the forgetting factor to achieve improved convergence effects, as
demonstrated by SILVA A C et al.,, (2013), CHEN X et al., (2015), and LANDAU | D et al., (2015). Furthermore, we have
introduced an enhanced version of the VSSLMS algorithm based on previous work (LANDAU | D et al., 2011b), and the
corresponding step update formulas are presented in Table 1.

Table 1. Summary and complexity of four VSSLMS algorithms

Algorithms Step Size update formulas Parameters
VSSLMS-A (KWONG R H et w(n) = Eu(n—1)+ne*(n—1) 2AE,7)
al., 1992)
VSSLMS-B (ABOULNASR T u(n) = Eu(n =1 +np*(n-1) 3(&,7,2)
etal., 1995) p(m)=Ap(n—1)+1A-Ae(n)e(n—1) o
VSSLMS-C (HUANG Betal.,  1y(n) = Eu(n—1)+ne* (n—1)e*(n—2) 2AE,7)
2015)
VSSLMS-D (FANG Y Betal, () =&u(n—1)+n(ne’(n-1) 2AEp)
2019) 1(n) = B -arccot(|e(n)]) I

In Table 1, for convenience, VSSLMS-A, VSSLMS-B, VSSLMS-C, and VSSLMS-D are used to represent the four
aforementioned VSSLMS algorithms, respectively. While VSSLMS-D has yielded more significant enhancements when
compared to other VSSLMS algorithms of the same type (VAU B et al., 2021), it's worth noting that the fixed value of the
forgetting factor still adversely affects the convergence rate of the algorithm. To address the issues, the authors have
introduced a variable forgetting factor enhancement method. By decaying the forgetting factor according to a specific
curve, the algorithm's convergence speed is improved while maintaining the steady-state performance of the original
algorithm. The forgetting factor update formulas are provided in Equations (38) and (39).

sO=A40)+1-4() (38)
A0 =4 AE-D+1-4, (39)

In Equations (38) and (39), &(¢) denotes the variable forgetting factor. The parameters 4, and 4 are utilized to
control the rate of decay. A, takes values within the range 0 < 4, < 1, and its value is typically close to 1, such as
Ay =0.90,...0.99 .The value of 4, determines the decay rate of 4, (¢). The closer the value of 4, is to 1, the slower the
decay rate of parameter 4,(¢) . The decay curves of several classical values are depicted in Figure 5. 4 (0) represents the
initial value of parameter 4,(¢), and &(¢) decays from 1 to 4,(0).

The essence of adaptive control is parameter identification, and the convergence effect of this improved VSSLMS
algorithm is verified through parameter identification experiments. It is assumed that the finite-dimensional adaptive
filter can exactly represent the real system (without model error). White noise signals are used to excite both the
unknown system and the adaptive filter, and the system error is obtained from the output of the real system and the
output of the model based on the measured noise. The system error reflects the deviation between the adaptive filter
model and the real system. The mathematical model of the real system is represented as
w’ =[0.5, 1.1, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1], while measurement noise with a signal-to-noise ratio of 10 dB is

opt

applied, with the signal-to-noise ratio calculated according to SNR=10Ig(E(x’ (n))/ E(V*(n))) .
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Figure 5 Attenuation amplitude of A, under classic value of 4,

Different VSSLMS algorithms mainly vary in how they update the step size. Intuitively, an adaptive step size enables
faster convergence during large disturbances and smoother steady-state behavior when the system reaches equilibrium.
The acceleration effect of the variable forgetting factor can be theoretically interpreted through the adaptive law
update in Eq. (40)—(44). When the forgetting factor A(k) decreases over time, the effective learning rate of recent error

samples is proportionally increased, allowing the adaptive filter to respond more rapidly to new disturbance information.
In the context of the mean-square convergence analysis of LMS-type algorithms, a smaller A(k) reduces the bias of

recent gradient estimates and enhances tracking ability under nonstationary environments. Therefore, the gradual decay
of A(k) provides a mechanism for dynamic adjustment of the equivalent step size, achieving faster transient

convergence while preserving steady-state stability.

Parameter identification simulations were performed for the above four VSSLMS algorithms based on the improved
form of the forgetting factor. For parameter identification, the combination of parameters recommended by the authors
in the original literature was used. The value of parameter 4 (0) is the same as the forgetting factor £ in the original

literature, and other parameters such as upper and lower limits remain consistent with the original literature. To ensure
that the four algorithms have the same initial convergence speed, they were set to have the same initial step size. After
several experiments, the Mean Squared Error (MSE) was used as the performance comparison metric for each algorithm,
as depicted in Figure 6.
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Figure 6 Comparison of the MSE curves for the modified VSSLMS algorithms with their original versions (SNR=10dB)

Figure 6 clearly illustrates that the VSSLMS algorithm with modification of variable forgetting factor effectively
enhances the convergence performance of the VSSLMS algorithms. For ease of representation, the modified version of
these VSSLMS algorithms is abbreviated in this paper as MVSSLMS-A, MVSSLMS-B, MVSSLMS-C and MVSSLMS-D
respectively. In the previous comparison of the convergence effects among the above VSSLMS algorithms, MVSSLMS-D
algorithm consistently outperforms several other VSSLMS algorithms. Its comprehensive representation is presented in
Equations (40) to (44).

Q(1+1) = Q(O)+p(D)e (P (1) (40)
ﬂ(t)=§(t)#(f—1)+77(f)€;(f—1) (41)
SO=A0)+1-4(0) (42)
AO=AA(E-D)+1-74, (43)
n(6) = ,B-arccot(‘eg (t)‘) (44)

When utilizing MVSSLMS-D as the PAA for the feedback AVC system, the operation of the entire feedback AVC
controller can be summarized as follows:
(1) Based on the system error eQ(t) measured in the current control cycle and the controller outputu(¢), the

input signal w(¢) of the adaptive filter can be obtained according to equation (13).

(2) The observation vectors @(¢) and &(¢) of the perturbed signals are constructed according to equation (27)
and (28).

(3) The adaptive filter parameter vector Q(¢+1) is updated according to equation (40) to (44).

(4) Calculate the controller output u(¢+1) for the next control cycle according to equation (35).

The stability characteristics and admissible parameter ranges of the proposed algorithm are summarized as follows.
The stability of the proposed feedback adaptive control system is theoretically guaranteed by the Youla—Kucera (Y—K)
parameterization framework. Because the adaptive filter is embedded in a closed-loop structure whose characteristic
polynomial remains unchanged, the internal stability of the system is preserved. For the parameter adaptation governed
by the VSSLMS algorithm, mean-square stability can be ensured when the step-size i and the forgetting-factor A satisfy
0 <u<2/(yYPpax)and 0 < A < 1, where P, ,,denotes the maximum input-signal power and y is an empirical safety
margin. These bounds guarantee convergence of the adaptive law without causing oscillatory behavior. In practice, uis
selected in the range 0.001-0.05 and A is initialized close to 1 (e.g., 0.98-0.995) to balance convergence speed and steady-
state accuracy.

4 Experimental verification of micro-vibration active control

In this section, we utilize the micro-vibration active isolation experimental system established in the previous
section to select a specific actuation direction for comparative verification of the SISO micro-vibration active control
algorithm. During the experiments, various typical disturbance signal features are chosen as micro-vibration disturbance
excitation sources based on a multi-frequency narrow-band disturbance environment. This is done to assess the vibration
suppression performance of the proposed Y-K parameterization-based feedback vibration active control algorithm under
different disturbance scenarios.

4.1 Dual-frequency sinusoidal perturbation

The micro-vibration excitation signal used is the superposition of two sinusoidal signals with frequencies of 10 Hz
and 25 Hz. Figure 7 displays the time-domain effects of active control of micro-vibration under dual-frequency sinusoidal
perturbation excitation. In Figure 7, the FXLMS adaptive control algorithm achieves a suppression efficiency of



approximately 50% for the dual-frequency disturbance removal. In comparison to the adaptive control algorithm alone,
the other two robust adaptive control algorithms based on the Y-K parameterization method exhibit significantly
improved steady-state effects, with vibration at steady state measuring only 0.3 um.

In the robust adaptive control algorithm based on the Y-K parameterization method, the parameter adaptive
algorithm is chosen to be the LMS algorithm and the VSSLMS algorithm proposed in this paper, respectively. Through
multiple parameter adjustments, it was observed that there is little difference in the vibration suppression effect
between the LMS algorithm and the VSSLMS algorithm when used as the parameter adaptive algorithm under dual-
frequency narrow-band disturbance excitation. For ease of representation, the three algorithms are abbreviated as
FXLMS, Q+LMS, and Q+VSSLMS in the figure legends, and these abbreviations continue to be used in the subsequent
sections.

dual-sine disturbance
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Figure 7 Control effect of AVC algorithms under a dual sine disturbance signal

Although the steady-state vibration amplitudes achieved by Q+LMS and Q+VSSLMS are similar, the convergence
characteristics differ significantly. The Q+VSSLMS algorithm reaches steady-state within approximately 3.2 s, while
Q+LMS requires about 5.4 s under the same conditions. This faster convergence confirms that the variable step-size
mechanism enhances the adaptation speed without compromising stability.

4.2 Spectrum mutation

In the spectrum mutation experiment, the amplitude remains unchanged while changing the frequency.Similar to
the dual-frequency sinusoidal disturbance, the micro-vibration excitation signal is created by superimposing two
sinusoidal signals with frequencies of 10 Hz and 25 Hz. During the 20-second experiment, the frequency of the perturbing
signal abruptly changed to 11 Hz and 26 Hz. Figure 8 displays the time-domain curves of micro-vibration active control

under the sudden change in frequency of the external disturbance excitation.
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4.3 Amplitude mutation

dual sine disturbance with spectrum variation
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In line with the previous two experiments, we began with dual-frequency narrow-band sinusoidal perturbations at
10 Hz and 25 Hz. At the 20-second mark, the amplitude of each sinusoidal perturbation signal abruptly increased to 125%
of its original amplitude. Figure 8 illustrates the time-domain effects of micro-vibration active control under the abrupt
amplitude perturbation excitation.

As shown in Figure 9, the vibration suppression effect of all three algorithms is diminished to varying degrees
following the amplitude mutation. The steady-state amplitude of the Q+VSSLMS algorithm changes from 0.3um before
the mutation to 1.5um after the mutation, but it remains superior to the Q+LMS and FxLMS algorithms.

Based on the experiments involving the active control of micro-vibrations under three typical disturbance
excitations, the following observations can be made:

1) Under dual-frequency sinusoidal narrow-band disturbances, the robust adaptive control algorithm based on the
Y-K parameterization method significantly outperforms the FxLMS adaptive control algorithm in terms of vibration
suppression.

2) The Q+VSSLMS algorithm achieves more satisfactory results when dealing with spectrum mutations and
amplitude mutations in dual-frequency sinusoidal narrow-band perturbations. Compared to the Q+LMS algorithm, the
VSSLM algorithm designed in this paper can adjust the step factor of the parameter adaptive algorithm in real-time,
enabling the algorithm to quickly converge to the new steady state under the new perturbation and exhibit improved
robustness.

The robustness of the proposed feedback adaptive controller can be theoretically explained by the Y-K
parameterization framework, in which the inclusion of the adaptive filter O(z) does not alter the closed-loop poles

defined by the central robust controller C(z). This structural invariance ensures that the system stability is preserved

even when the secondary path model is uncertain or time-varying.

The experimental observations in Figures 7-9 directly reflect this property. When the disturbance spectra or
amplitudes change abruptly, the FXLMS and Q+LMS algorithms exhibit transient instability and slower re-convergence,
whereas the proposed Q+VSSLMS algorithm maintains bounded error dynamics and rapidly restores steady-state
performance. This behavior confirms the theoretical prediction that the adaptive law enhances disturbance rejection
while maintaining closed-loop robustness guaranteed by the Y-K formulation.




5 Conclusions

In this paper, we introduce a feedback adaptive vibration active control algorithm and a novel VSSLMS parameter
adaptive algorithm based on the Y-K parameterization method. Our objective is to achieve micro-vibration control of
satellite structures under multi-frequency unknown and time-varying narrow-band disturbances, especially when the
secondary channel model is unknown.

The advantages of the VSSLMS algorithm proposed in this paper are validated through system identification
simulations. Additionally, the robustness of the Y-K parameterization-based feedback robust adaptive control algorithm
is demonstrated in comparison to other algorithms in scenarios involving sudden changes in the amplitude of disturbance
signal spectra, as confirmed by real-time micro-vibration control experiments.
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