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Abstract 
This paper presents a comparative study of stochastic Kriging-based optimization algorithms applied to a 
generic infrastructure planning problem, using direct policy search (DPS) as a heuristic approach. The 
evaluated problem is a sequential decision problem involving a generic infrastructure planning scenario under 
uncertainty, with performance dependent on system and cost model parameters.  The focus is to compare 
the impact of heterogeneous noise treatment in an optimization framework, approaching three algorithms: 
Minimum Quantile criterion (MQ), stochastic Efficient Global Optimization (sEGO), and Expected 
Improvement with Reinterpolation (EIR). The MQ algorithm is the only one that does not address information 
about the noise variance of the stochastic parameter. The results demonstrate that the algorithms presented 
satisfactory performance, especially those with heterogeneous noise treatment, and show potential for 
solving complex infrastructure engineering planning problems under uncertainties in a DPS framework. 
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1 INTRODUCTION 

Direct policy search is one of the solution frameworks for solving the general decision problem under uncertainty. 
This method has been applied to a wide range of infrastructure planning problems, including transportation (Golla et al., 
2021), energy (Gupta et al., 2020), water resource management (Giuliani et al., 2016), and risk-based inspection (RBI) 
planning (Bismut and Straub, 2018; Luque and Straub, 2019). 

In DPS with a heuristic, the parameters of a function mapping the system state to decisions are optimized rather 
than the decisions themselves. What results from optimization with DPS is therefore not a sequence of decisions, but a 
policy that one can operate (Quinn et al., 2017). A generic infrastructure planning problem consists of finding the heuristic 
parameters that maximize the expected total life-cycle utility under uncertainties (Bismut and Straub, 2019). Therefore, 
a global optimization method is necessary.  

One strategy for solving stochastic optimization problems is through Kriging-based algorithms. The Kriging is a 
Gaussian based metamodel, that acts as an interpolating or regressor curve of support points that have information from 
objective function. This approach allows for predicting results without use of the expensive primary source (objective 
function) (Forrester and Keane, 2009). One Kriging structure, suitable for application to noisy problems, is a regression 
method known as Stochastic Kriging (SK) (Ankenman et al., 2010). One approach to improving this method, as used in 
this paper, is by replacing the standard point variance estimates with smoothed variance evaluations, as suggested by 
Kaminski (2015).  

The primary motivation for using Kriging-based algorithms in optimization problems is to reduce the number of 
expensive fitness evaluations without degrading the quality of the obtained optimal solution, even with a small sample 
of stochastic parameters. Therefore, a great advantage of the Kriging surrogate is that it uses the mean squared error 
(MSE) to quantify the response surface’s uncertainty (Van Beers and Kleijnen, 2003; Forrester and Keane, 2009). 

In this article, we evaluate the effectiveness of three Kriging-based optimization algorithms applied to a 
heterogeneous noise DPS problem: Minimum Quantile criterion (MQ), stochastic Efficient Global Optimization (sEGO), 
and Expected Improvement with Reinterpolation (EIR).  

The MQ algorithm, proposed by Cox and John (1992), balances exploration using metamodel variance information 
and exploitation using a percentile of the SK value. However, this method does not address the noise information in the 
stochastic DPS problem. In stochastic simulation, these algorithms that do not address information from function 
variance may not be very appropriate, as it ignores the noise in the observations, assuming that samples were taken with 
infinite precision. 

A traditional approach to optimization through Kriging is the Efficient Global Optimization (EGO) method (Jones et 
al., 1998). An extension of EGO for stochastic problems that incorporates heterogeneous noise treatment is Stochastic 
Efficient Global Optimization (sEGO), proposed by Carraro et al. (2019). 

In sEGO, the search for new points in the optimization process occurs in only one step, and the stochastic noise 
treatment information is represented directly in its formulation. Another heterogeneous noise treatment strategy 
involves a second iterative process. An example is the Expected Improvement with Reinterpolation (EIR) method 
proposed by Nascentes et al. (2019) for stochastic Kriging. In this approach, instead of modifying the algorithm structure 
for stochastic cases, the SK model is used to represent the problem, followed by using the SK predictions to create a new 
Kriging surrogate, now deterministic. With this noise-free second model, a classical deterministic optimization can be 
applied. 

The goal of this paper is to compare the performance of those three stochastic Kriging-based optimization 
algorithms - MQ, sEGO, and EIR - in a DPS heuristic framework applied to a generic infrastructure planning problem. The 
objective is to find the parameters that maximize the expected total life-cycle utility under uncertainties. 

This article is organized as follows: the second section presents the heuristic of the direct policy search applied to 
the generic planning problem. The third section details the Kriging-based optimization algorithms. The fourth section 
presents the analysis and results considering the problem in one-dimensional and three-dimensional cases. Lastly, 
conclusions are presented in the fifth section. 

2 DIRECT POLICY SEARCH TO THE INFRASTRUCTURE PLANNING PROBLEM 

Direct policy search (DPS) is a strategy for solving sequential decision problems that addresses heuristics as a search 
strategy for the global optimum within a reduced solution space. DPS is often chosen for its flexibility and intuitive 
principles (Bismut and Straub, 2019). The optimal strategy for the decision problem is: 

 



 
  

 

 

 
(1) 

 
where  is the space of all possible strategies, and 𝐄[𝑦(𝑥, 𝜃)], in our problem, is the expected total life-cycle utility 
associated with a strategy , and , is the vector of stochastic parameters. 

2.1 Infrastructure planning problem 

We investigate a generic infrastructure planning problem, as described in Bismut and Straub (2019), which involves 
increasing the system’s capacity in an optimized manner to meet demand at the lowest implementation cost. Therefore, 
each year 𝑡, the system’s capacity 𝑎𝑡 must cover the demand 𝜃𝑡, which will increase over the discrete time interval [1, 2, 
3, ..., T ]. The initial system capacity 𝑎1is fixed by the operator and can be increased at any time for a cost. The cumulative 
update costs are given by: 
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where is the upgrading cost factor, 𝑐𝐹 = 10is the penalty factor, Φ is the standard normal cumulative distribution 
of the capacity, Φ~𝑁(𝑎𝑡, 𝜃𝑡), α = 0.1is the tolerance, 𝛾𝑡 is the discount factor 𝛾𝑡 = 1/(1 + 𝑟)𝑡 with  r = 0.02 as used 
in Bismut and Straub (2019)  and, lastly, is the system demand defined in Table 1. 

 The system incurs a penalty, 𝑈𝑅,𝑡, when demand is not met within a certain margin. Thus, the expected total cost, 

𝑈, will be given by the portion of the upgrade cost, 𝑈𝐶,𝑡, plus the cost of the excess penalty, 𝑈𝑅,𝑡. So, the demand growth 
is dependent on random quantities and the objective function. The expected value is given by: 
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The parameters used for the DPS are provided in Table 1. Given the uncertain nature of demand, the initial demand 

𝜃1 is modeled as a normal random variable. 𝑇 is the design horizon, while 𝑍𝑡 denotes the noisy observation of demand 
at time, 𝑡. 

Table 1 Model parameters.  

Variable Type  Mean Std.Dev. 

 Normal distr.   
 function  - 

 Normal distr.   
 Normal distr.   
 Deterministic  - 

 
After setting the initial capacity 𝑎1, the system is subject to the demand of the first year 𝜃1, where 𝑍1 is the noisy 

observation of this demand. Then, the capacity for the next year (𝑎2) is calculated, and so on, up to the time horizon 𝑇. 
The capacity can only increase over time and must be restricted to six stages, 𝑡 = 0,1,2,3,4,5,6. 

2.2 Heuristics investigated 

Figure 1 presents a pseudocode of the heuristic adopted for the infrastructure planning problem, as presented by 
Bismut and Straub (2019), to update the system’s capacity. According to this approach, when the current observation 𝑍𝑡 



 
  

 

 
is within a specific margin of the available capacity 𝑎𝑡, the system’s capacity is increased by at least ∆𝑎, where the size 
of this margin is determined by the factor k. To maximize the expected total life-cycle utility it is necessary to optimize 

the parameters 𝑎1, ∆𝑎 and 𝑘. For this purpose, three optimization algorithms based on Kriging - MQ, sEGO, and EIR —

are used, and their results are compared. 
 

 
Figure 1: Pseudocode for the heuristic to upgrade the capacity based on the observed value of demand 

3 KRIGING METAMODEL BASED OPTIMIZATION 

The surrogate model is only an approximation of the true stochastic function we wish to optimize. However, the 
use of the Kriging metamodel can provide accurate predictions of complex landscapes and offers a credible estimate of 
the possible error in these predictions. So, in Kriging-based optimization algorithms, the error estimates make it possible 
to make tradeoffs between sampling where the current prediction is good (exploitation) and sampling where there is 
high uncertainty in the function predictor value (exploration), allowing searching the decision space efficiently (Jones et 
al., 1998). 

Kriging-based optimization algorithms start by simulating a limited set of input combinations (referred to as initial 
sampling) and iteratively select new input combinations to simulate by evaluating an infill criterion (IC), which reflects 
information from Kriging. Those updates points are called Infill Points (IPs). The response surface is then updated 
sequentially with information obtained from the newly simulated IPs, improving the surrogate accuracy while at the 
same time seeking its global minimum. The procedure is repeated until the desired performance level is reached and the 
estimated optimum is returned (Rojas-Gonzalez and Van Nieuwenhuyse, 2020). 

All evaluated algorithms used an updated version of stochastic kriging (SK) with smoothed variance, employing 
deterministic Kriging metamodel prediction to approximate the problem variance (Kaminski, 2015; Carraro et al., 2019). 

Both stochastic and deterministic Kriging use the same sampling plan χ = [x(1), x(2), . . . , x(ns)] , 

with 𝑛𝑠 is the number of support points.  
The prediction and variance of the SK at a given point 𝑥+ is given by: 
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where δ = 1 − 𝟏T[ΣZ + Σ̂ϵ]
−1

σ̂Z
2 𝐡(𝑥+), 𝜇̂ is the vector of estimated values for the mean at each design point, σ̂𝑧

2 is the 

estimated value for the extrinsic variance associated with the implementation of the metamodel, 𝐡 is the correlation 

vector between the point to be predicted and each of the design points, Σ𝑍 is the covariance matrix, Σ̂ϵ is the covariance 
matrix referring to the variance of the intrinsic noise, 𝟏 is the unit vector, and 𝒚̅ is the approximate mean value of the 
stochastic function at each design point.  



 
  

 

 
For notation convenience, the  y̅ estimates are grouped into the vector  y̅ = [y̅(x(1)), y̅(x(2)), . . . , y̅(x(ns))]T, and 

the estimatiors are given by: 
 

  
(9) 

 
where 𝑛𝑡  is the number of samples of the stochastic parameter, i.e., the number of simulation replications taken at 
design points, and 𝜽𝑗 is a random sample from a stochastic variable of the problem.  

The correlation vector of 𝑥+ with the 𝑛𝑠 support points is given by: 
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where 𝑐𝑘  is a gaussian kernel parameterized for predictor. The SK surrogate parameters (𝜇̂, 𝜎̂𝑧

2, 𝑐𝑘) are calculated via 

Maximum Likelihood Estimation (MLE): 
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For the construction of the SK model, it is assumed that the observed data comes from a Gaussian process 𝑓(𝑥(𝑖)) =

𝜇 + 𝑍(𝑥(𝑖)), where 𝜇 is its constante mean, 𝑍 is a zero mean stationary gaussian process with variance 𝜎𝑧
2 and covariance 

Σ𝑍 = 𝜎𝑧
2 exp [− ∑ 𝑐𝑘|𝑥𝑘

(𝑖)
− 𝑥𝑘

(𝑗)
|2𝑛𝑥

𝑘=1 ].  

By employing deterministic Kriging metamodel prediction to approximate the variance of the problem in stochastic 

Kriging, the covariance function is given by 𝛴̂𝜖 = Diag [𝑉̂(x(1)), . . . , 𝑉̂(x(ns))] 𝑛𝑡⁄ , where 𝑉̂ is an estimator of 𝑉(𝑥𝑖) given 

by a deterministic Kriging metamodel. Thus, the Kriging prediction for variance at a given point is: 
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where 𝒉 is the correlation vector for variance, 𝜇̂𝑉 are the mean trend of the variance on the Kriging metamodel, 𝛴𝑍𝑉

 is 

the covariance matrix of all the support points of variance extrinsic noise, and 𝑣̅ are the estimates of variance at each 
design point.  

For notation convenience, the  𝑣̅ estimates are grouped into the vector  𝑣̅  =  [𝑉̅(𝑥(1)), 𝑉̅(𝑥(2)), . . . , 𝑉̅(𝑥(𝑛𝑠))]𝑇, and 
the estimatiors are given by: 
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The correlation vector of x+ with the nt support points is given by: 
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where 𝑐𝑉𝑘

 is a gaussian kernel parameterized for variance predictor. The Kriging surrogate parameters (𝜇̂𝑉 , 𝜎̂𝑧𝑉

2 , 𝑐𝑉𝑘
) are 

calculated via MLE: 
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For the construction of the Kriging metamodel, it is assumed that the observed data comes from a Gaussian process 

𝑉(𝑥(𝑖)) = 𝜇𝑉 + 𝑍𝑉(𝑥(𝑖)), where 𝜇𝑉 is its constante mean, 𝑍𝑉 is a zero mean stationary gaussian process with variance 𝜎𝑍𝑉

2  

and covariance Σ𝐙𝐕
=  exp [− ∑ 𝑐𝑉𝑘

|𝑥𝑘
(𝑖)

− 𝑥𝑘
(𝑗)

|2𝑛𝑥
𝑘=1 ].  

These Kriging structures can be consulted in Kaminski (2015) and Carraro et al. (2019). The remainder of this section 
briefly explains the search and the replication strategy for each algorithm. 

3.1 Minimum Quantile criterion - MQ 

 The Minimum Quantile (MQ) criterion, originally proposed by Cox and John (1992), aims to balance exploration and 
exploitation by selecting, as the next infill point (IP), the location that minimizes a chosen percentile of the predictor 

obtained via SK. In other words, it uses a weighted sum of the predicted mean, ℎ̂, and the predicted variance, 𝑠̂2 (Jalali 
et al., 2017). The quantile of the predicted value is given by: 
 

 (18) 
 
where 𝑦̂ is SK predictor defined in Equation 7, 𝑠̂2 is the standard deviation of the SK prediction defined in Equation 8, Φ 
is the cumulative probability density of the normal distribution and β ϵ [0.5, 1]  is a parameter that adjusts a quantile 
level, i.e. tunes the level of reliability wanted on the final result. In this context, β = 0.5, as adopted by Picheny et al. 
(2013), which means that the design points are evaluated based on the kriging mean predictor only, without taking into 
account the prediction variance at those points. So, the infill point in each iteration is: 
 

 (19) 

 
This method does not account for the noise variance associated with the stochastic parameter. 

3.2 stochastic Efficient Global Optimization - sEGO 

The sEGO algorithm proposed by Carraro et al. (2019) chooses the alternative with maximum augmented expected 
improvement (AEI) as the next infill point: 
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where 𝑦𝑚𝑖𝑛 is the Kriging prediction at the current effective best solution, 𝜎̂𝜖(𝑥+) = 𝑉̂(𝑥+) 𝑛𝑡⁄  is the variance of the 
noise intrinsic to the stochastic function, 𝑦̂ is SK predictor defined in Equation 7 and 𝑠̂2  is SK variance  defined in Equation 
8.  

The𝑦𝑚𝑖𝑛  calculation assumes the point with minimum Kriging quantile, 𝑞(𝑥), among the simulated points, i.e., 
𝑞(𝑥) = 𝑦̂ + Φ−1(𝛽)𝑠̂(𝑥) with β = 0.84134 (Jalali et al., 2017).  In this case, the parameter β corresponds to a quantile 
approximately one standard deviation above the mean of the standard normal distribution, thus balancing exploration 
and exploitation. High values of β (i.e., near 1) penalize designs with high uncertainty, reflecting a more conservative 
approach. Hence, with a high β, the criterion is more likely to favor observation repetitions or clustering, to decrease 
locally the prediction variance. In contrast, with β = 0.5 in the MQ approach, the criterion can be expected to be more 
exploratory. 

The first part of Equation 21 could be calculated as: 
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where Φ and 𝜙 are the cumulative distribution function and probability density function, respectively, and 𝑦𝑚𝑖𝑛 is the 
smallest sampled value of 𝑦. So, in the optimization process, the next IP is found maximizing AEI(𝑥+), i.e., leads to the 



 
  

 

 
new point 𝑥+ with the highest probability of improvement, either by sampling toward the optimum or improving the 
approximation of the metamodel. 

3.3 Expected Improvement with Reinterpolation - EIR 

Approached by Nascentes et al. (2019), the method proposes to use SK and deterministic Kriging together like a 
noise-handling strategy, instead of modifying the EI for cases stochastic.  

The predictions by SK at the support points will be used to build a new model in Kriging, now deterministic, since 
the predictions will come free of intrinsic error. In other words, after training the SK model, its output serves as the 
training set for a new surrogate model that is now considered to be without noise. As this last model is noise-free, the 
classic EI, Equation 21, could be used as a metric to obtain new IPs (Forrester et al., 2006). So, the Kriging prediction for 
the deterministic case will be rewritten as: 
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where 𝜇̂ is the trend of the deterministic Kriging metamodel obtained with information about the response surface 
constructed through SK model (𝑦̂𝑟), 𝐡 is the correlation vector, Ψ is the covariance matrix of all support points, and 𝑦̅ is 
the vector of the approximate mean value of the objective function at each design point. 

And, as we can use the SK predictor itself, the re-interpolation will only need the value of the new spatial variance 
of the correlation between the support points. 

 

 
(24) 

4 COMPARISON OF RESULTS 

In this section, we investigated the performance of the three stochastic Kriging-based algorithms optimization, 
which are MQ, sEGO, and EIR, approaching stochastic Kriging metamodel with smoothed noise variance applied to a 
generic infrastructure planning problem solved by direct policy search. Our focus is on comparing the results considering 
continuous design variables. The problem consists of: 

 

 

(25) 

 
Figure 2 illustrates the convergence of the expected value of the total cost, E[U], in relation to the sample size of 

the noisy parameter, considering the best parameter values found by Bismut and Straub (2019): 𝑎0 = 2, Δ𝑎 = 1, and 

𝑘 = 0.1236, resulting in a cost of 2.79. It can be observed that the expected value starts stabilizing after approximately 
1600 samples. Furthermore, we observe that the expected cost, measured at the 10th and 90th percentiles, stabilizes 
with larger sample sizes. 



 
  

 

 

 
Figure 2: Expected total cost according sample size 

 
There will be two approaches to the analysis of the problem. Initially, the direct policy search problem was simplified 

by considering a one-dimensional problem with only the parameter 𝑘 as a design variable. Subsequently, the problem 

was optimized for all three parameters: 𝑎0, Δ𝑎 and 𝑘. We will evaluate both cases by varying the sampling size (𝑛𝑡) of 
the stochastic parameter.  

4.1 One-dimensional DPS problem 

In this case, we considered a one-dimensional problem with 𝑘 as the sole design variable. Following the results 

obtained by Bismut and Straub (2019), we will set the others initial parameters as 𝑎0 = 2, and Δ𝑎 = 1. 

In the optimization process, an initial sampling 𝑛𝑡 = 10 was employed to build a Kriging surrogate, distributed by 
Latin Hypercube method (Jones et al., 1998), while the stopping criterion was set as 3 IPs. Two sample sizes of the 
stochastic parameter were evaluated, 𝑛𝜃 = 50 and 𝑛𝜃 = 100. The performance of MQ, SEGO and EIR are presented in 
Table 2, with the values representing the analysis for fifty repetitions of the optimization process to account for the 
statistical variability. 

Table 2 Optimum mean value and standard deviation for the 1D DPS problem  

   
Optimization 

algorithm 
Mean Std.Dev. Mean Std.Dev. 

MQ 2.779 0.018 2.775 0.007 
sEGO 2.775 0.007 2.773 0.006 
EIR 2.775 0.009 2.778 0.026 

 
All three algorithms demonstrated strong performance, achieving average minimum values that were very close to 

each other. For sample sizes of 𝑛𝑡 = 100, MQ, and sEGO showed lower variance in the results. The variance information 
approach may have influenced the results obtained for the smaller sample sizes of the stochastic parameter, 𝑛𝑡 = 50, 
resulting in a higher standard deviation of the MQ algorithm. In contrast, the sEGO and EIR algorithms performed better, 
obtaining smaller minimum mean values of 2.775 and showing relatively low standard deviations. Figure 3 presents the 
statistical results using the box plot technique, highlighting the superior performance of sEGO and EIR for this second 
scenario. Furthermore, in MQ the outliers were more significant.  



 
  

 

 

 
Figure 3: Boxplot of expected total cost for the 1D problem with 𝑛𝑡 = 50 

 
This analysis further highlights the strong performance of the algorithms, which achieve a mean minimum value 

surpassing the target of 2.79 reported by Bismut and Straub (2019) using the Cross Entropy method. Another analysis 
can be conducted by comparing the number of samples required to stabilize the total cost, which is 1600 as shown in 
Figure 2, with the number of samples used by the algorithms, which is significantly lower. The best minimum expected 
cost, for 𝑛𝑡 = 50, reached by sEGO was 2.7677 at 𝑘 = 0.1121and by the EIR was 2.7678 resulting from 𝑘 = 0.1125. 

4.2 Three-dimensional DPS problem 

In this section we analyze the three-dimensional problem with the parameters 𝑎0, Δ𝑎, and 𝑘 as continuous design 

variables of heuristic DPS for the generic infrastructure planning problem. 
In the process of minimizing the expected cost 𝐸[𝑈], 𝑛𝑡 = 30 samples were utilized for the construction of the 

Kriging surrogate, along with 10 IPs in the optimization process. Two sample sizes were analyzed for the stochastic 
parameter, 𝑛𝜃 = 50 and 𝑛𝜃 = 100, with each optimization algorithm runing 50 times. The results for the mean and 
standard deviation are presented in Table 3. 

Table 3 Optimum mean and standard deviation value for the 3D DPS problem  

   
Optimization 

algorithm 
Mean Std.Dev. Mean Std.Dev. 

MQ 2.828 0.061 2.818 0.065 
sEGO 2.807 0.054 2.804 0.046 
EIR 2.814 0.056 2.800 0.038 

 
 
The impact of the variance information approach becomes evident in the three-dimensional DPS problem. For the 

two sample sizes of the stochastic parameter, the MQ algorithm resulted in a higher average of the minimums obtained. 
In addition, the higher standard deviation indicates greater variability in the results of the 50 iterations. The increased 
dimensionality of the problem may have amplified the influence of noise, affecting the algorithm’s ability to handle noise 
heterogeneity is more important. In contrast, in a 1D approach, the influence of noise can be more easily smoothed or 
may have a smaller impact on the quality of the solutions. 

On the other hand, the sEGO and EIR algorithms obtained a lower average value of the minimums and less variability 
in the results, indicating a superior performance and greater consistency in their optimization process. Among them, 
sEGO was the one that presented the best results, being the least affected by reducing the size of the stochastic 
parameter sample. These results can be evidenced when analyzing the boxplots of the optima found for 𝑛𝑡 = 50, as 
shown in Figure 4. 



 
  

 

 

 
Figure 4: Boxplot of expected total cost for the 3D problem with 𝑛𝑡 = 50 

From Figure 4, it is possible to conclude that using the MQ algorithm resulted in greater dispersion in the results, 
with a higher tendency for values above the median. sEGO was the method that demonstrated the best performance, 
obtaining a lower average value, followed by the EIR method. Both sEGO and EIR exhibited similar dispersion in the 
results, with EIR having the median close to the mean value. Regarding outliers, all three methods showed a low rate of 
discrepancies in the minimum value. The optimal parameter values for the sEGO, and EIR algorithms, with 𝑛𝜃 = 50,  that 
resulted in the minimum expected total cost, are presented in Table 4. 

Table 4 Optimum parameters value for 3D DPS problem  

Algorithms E[U] a0 ∆a 𝑘 

sEGO 2.7603 1.880 1 0.1196 
EIR 2.7624 1.822 1 0.1212 

 

5 CONCLUSION 

In this paper, three algorithms - MQ, sEGO and EIR - based on Kriging for optimization were compared for solving a 
generic infrastructure planning problem with heterogeneous noise approaching a direct policy search heuristic. The MQ 
algorithm is the only one that does not address information about the noise variance of the stochastic parameter. 
Additionally, the study approach smoothed variance estimations in both the stochastic Kriging surrogate and the infill 
criterion in a sEGO and EIR optimization framework. 

The problem being analyzed involves the optimization of three parameters - the initial system capacity (𝑎0), the 
capacity increment (Δ𝑎), and a capacity correction factor (𝑘) - using a DPS heuristic as the solution strategy. Initially, the 
problem was simplified to a one-dimensional, with the design variable limited to only the parameter k. Later, the analysis 
was extended to include all three parameters as continuous design variables.  

From the results, it was possible to observe that the quality of the solutions returned by the MQ algorithm was 
affected due to the absence of variance information in its framework. The sEGO and EIR were more competitive 
algorithms, presenting smaller variance in their results and achieving a lower average of the total cost obtained among 
all simulations from the optimization process, even with a small sample of the stochastic parameters. These results are 
even more evident for the three-dimensional problem, in which there was greater dispersion in the results obtained by 
MQ, compared to the sEGO and EIR methods. 

Based on the solution obtained, it is possible to conclude that incorporating information about the variance of the 
stochastic parameter in Kriging-based algorithms was more effective in solving the infrastructure planning problem, using 
direct policy search with a heuristic approach. Furthermore, the Kriging approach not only reduced the number of 
expensive fitness evaluations, but also allowed optimization with a smaller sample size of the stochastic parameter 



 
  

 

 
without compromising the quality of the optimal solution. The results indicate that the using of Kriging-based algorithms 
with heterogeneous noise treatment in their framework has research potential for optimizing infrastructure planning 
problems using a direct policy search as a heuristic approach. 
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