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Abstract 
This work presents stability analyzes results for a micro-launch vehicle (Micro-LV) considering the effects of 
sloshing during the flight of the first stage. A conceptual Two-Stage to Orbit (TSTO) Micro-LV utilizing liquid 
propulsion with LOX as oxidize and RP-1 as fuel is developed as a benchmark for stability analyses. Its mission 
objective is to deploy a payload of 100 kg into low Earth orbit (LEO) at an altitude of 300 km. Linearized 
equations of motion for rigid and flexible bodies, along with engine inertia effects and sloshing, are considered 
and arranged in a state-space formulation. Transfer functions relating the pitch angle ∅𝑦 and the engine 

gimbal angle, βEy are determined for open-loop stability analyses considering a proportional-derivative (PD) 

attitude controller. Root locus techniques are employed to identify regions located in the right half-plane 
(RHP) associated with sloshing frequencies, which characterize instability. Due to propellant consumption 
throughout the flight, stability analyses are conducted for various tanks fill ratios (FR) ranging from 0% to 
100%, in increments of 10%. It is observed that at a FR of 90%, the RP-1 tank exhibits instability because its 
sloshing mass is situated between the center of percussion (CP) and the center of gravity (CG) of the Micro-
LV, in the area referred as the danger zone. It was noted that flexibility slightly dampened the effects of 
sloshing, but not significantly. Additionally, the coupling between the tanks concerning the variation of 
damping from one tank to another was investigated. A solution for the passive mitigation of sloshing 
instability is implemented by introducing ring baffles with a minimum damping requirement of 0.15%, and its 
effect on the vehicle’s stability is analyzed. 
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1 INTRODUCTION 

According to Wekerle et al. (2017), the miniaturization of electronics, along with reliability, increased performance, 
and cost reduction, has allowed the aerospace industry to develop and use small satellites. Pelton and Rene Laufer 
(2021), highlighted the huge and rapid growth of the new commercial market related to microsats (10–100 kg) and 
minisats (100–500 kg), which are most frequently launched into low Earth orbits (LEO). Although 60% of the satellization 
missions of these small satellites employ medium-sized launch vehicles (LV), where they are carried out in a shared form 
such as "rideshare" or "piggyback", it has the disadvantage of waiting for launch opportunities, Wekerle et al. (2017). The 
use of small and Micro-LV to deploy small satellites offers some advantages. In this case, we can highlight greater 
flexibility in terms of the number of missions, specific orbits and, in some cases, shorter time to orbit, as well as 
technological development. Such characteristics guarantee the existence of a market opportunity for the employment 
of small and Micro-LV. In Kulu (2021), a market research of the launch industry in the employment of small launchers 
was presented. 

 The configuration of an LV will depend on the required performance, which in general is its ability to insert the mass 
of the satellite into orbit, Schlingloff (2005). To serve the Smallsat launch market in LEO we can mention the small LV, 
such as the Falcon1 (2008), Astra Rocket 4 (2020), Electron (2022) and Alpha Launch (2022). All these LV are liquid pro-
pelled, Two-Stage to Orbit (TSTO), which present lower complexity, when compared to other multistage vehicles, with 
the minimum number of separation events, cost and the risk of failure, Motiwala et al. (2014). The use of liquid propul-
sion enables greater propulsive efficiency and control capacity in relation to solid propellant, Sutton and Blibarrz (2010). 

 In an LV with liquid propulsion, the dynamic behavior of the lateral sloshing of the propellants inside the tanks is a 
very important issue in their design, due to the stability and control conditions, Greensite (1970), Falangas (2016). Slosh-
ing is defined as the periodic movement of the free surface of a liquid in a partially filled tank or container, Abramson 
(1966). The motion of the lateral sloshing waves has a natural frequency that depends on: (a) the shape of the tank and 
(b) the acceleration of gravity (in the laboratory) or the axial acceleration of the tank (for a launch vehicle under thrust), 
Dodge (2000). Propellant sloshing frequencies are usually lower than natural structural frequencies, but are sometimes 
close to the control system's bandwidth and can cause problems when it becomes unstable. Thus, the control system, 
flexible body and sloshing frequencies must be well separated. If the dominant frequencies of lateral sloshing are close 
to any of the control frequencies, it can result in an instability in the flight characteristics of the LV, whereas if the sloshing 
frequencies are close to the bending frequencies, a wide amplitude of oscillation can occur, Falangas (2016).  

The study of the effects of lateral sloshing on the dynamic behavior of LV with respect to stability and control was 
well explored and documented in the 1960s in the development of NASA's Apollo project with Garner (1964), Bauer 
(1967) and Greensite (1967). The equations of motion of the LV are derived using the Lagrange´s method. To include 
sloshing effects in launcher dynamics, it is convenient to conceptually replace the liquid with an equivalent linear me-
chanical system, such as pendulum or mass-spring, as described in Abramson (1966), Dodge (2000) and Ibrahim (2005). 
For the dynamic analysis, the rigid and flexible body movement of the LV with the presence of the engine along with the 
effects of sloshing are considered. In this approach, we can cite the study by Nichawde et al. (2004) that evaluated the 
dynamic coupling between sloshing and rigid body of LV in atmospheric planar flight, using a sloshing model represented 
by a pendulum. The stability boundaries were analyzed with dimensionless parameters of the nonlinear model, as well 
as through root locus of the transfer functions of the linearized model. Following the same line, Shekhawat et al. (2006) 
applied bifurcation analysis techniques. The equations are linearized and root location graphs are obtained. The results 
show that the effect of sloshing can present static and dynamic instabilities in the vehicle. More recently, Pei (2021) 
analytically investigated the stability boundaries of sloshing in a space vehicle. He arrived at the same conclusion as Bauer 
(1967), that for a typical LV with thrust vector control and a single tank with sloshing, the danger zone of sloshing is 
located between the vehicle's center of mass (CG) and the center of percussion (CP), ignoring effects, such as aerody-
namics and axial acceleration. If the sloshing mass is located between these two points mentioned, buffles may be re-
quired to provide additional damping for stability. Although this criterion is widely used, its application is limited to the 
analysis of sloshing stability for a single LV tank. Barrows and Orr (2021), stated that for two tanks, if the sloshing fre-
quencies are well separated, Bauer's (1967) criterion can be applied. However, if they are too close, such an approach 
can lead to incorrect conclusions. The best approach in this case is to investigate stability through eigenvalues, obtaining 
the equations of motion arranged in a state space matrix form. 

In the design and development of large and medium-sized LV with liquid propulsion, the study of sloshing should 
always be investigated, as the large amount of propellant mass can lead to stability and control problems. For the case 
of Micro-LV, this type of investigation can also gain importance, even involving a lower propellant mass. In this case, we 
can mention the LV Falcon 1, which during its second flight, an anomalous disturbance during the separation between 
the stages led to instabilities causing catastrophic loss, Bijelde et all (2007). It was later noted that the disturbance caused 



  

instability due to sloshing in the second-stage tanks, which the control system was unable to handle. Changes in the tanks 
design, with the introduction of baffles rings, were adopted for the successive flights.       

In the present work, a study of propellant sloshing effects in the stability of a Micro-LV TSTO during the ascending 
flight phase propelled by the first stage was performed. The sloshing was modelled by using mass-spring equivalent 
mechanical models. To overcome the lack of design data for this class of vehicles, the preliminary design of a concept 
vehicle was carried out. This design data can be useful as a benchmark for similar studies for other authors. The 
relationship between the instability caused by sloshing in the vehicle dynamics and the filling rate of the propellant tanks 
was investigated and the instability point identified. The use of ring baffles was proposed as a passive solution to mitigate 
unstable behavior.  

  

2 MODEL   

2.1 Sloshing  

Sloshing is defined as the periodic motion of the free surface of a liquid in a partially filled tank or container. To analyze 
sloshing, it is conceptually convenient to replace the liquid with an equivalent linear mechanical system, such as a 
pendulum or mass-spring system, as described by Abramson (1966), Dodge (2000), and Ibrahim (2005). 

2.1.1 Equivalent Mechanical Model 

If the liquid is assumed as non-viscous and irrotational, its velocity distribution can be derived from the linear theory. 
The velocity potential of a mass of liquid undergoing sloshing and contained in a vertical cylindrical tank, according to 
Dodge (2000), for a typical self-solution and eigenvalues is given as:  
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where r, θ, z are coordinates in a cylindrical coordinate system fixed to the tank, d is the tank diameter, h is the height of 
the liquid, λmn, are the zeros of the first kind Bessel function derivative and g̅  is the axial acceleration of the tank (in the 
case of this work, it will be the axial acceleration of the Micro- LV). Sloshing modes can be symmetric or antisymmetric. 
When m=1 the antisymmetric modes of the surface waves are generated. Only antisymmetric modes generate forces 

and torques in the tanks. The values λmn for m = 1  are denoted by n, whose values are: 1=1.841, 2=5.331, 3=8.536, 

4=11.706, 5=14.864, n1+1 n1+1=n1+.  
 

To obtain the sloshing parameters of the mass-spring model, the static properties of the liquid must be preserved. 
Therefore, the sum of all the masses must be the same as the liquid mass mliq, and the center of mass of the model must 
be at the same elevation as the liquid. These constraints are expressed analytically by: 

n

0 n liq
i= 1

n

0 0 n n
i= 1

m + m = m

m h + m h = 0

å

å

 (3) 

where m0 is the fixed mass and h0 is distance of the fixed mass relative to the center of gravity of the tank (CG).  



  

Additionally, the mechanical model must preserve the forces, torques, and natural frequencies. Figure 1 below 
illustrates the model parameters. 
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Figure 1 Spring-mass model for the cylindrical tank. 

According to Abramson (1966), each of the spring constants ksn is chosen in such a way that its ratio with the oscil-
lating mass is equal to the square of the natural frequency, Ωsn

2 . Thus; 
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where the parameters msn and ksn, representing the slosh mass and its corresponding stiffness, respectively, and are 
calculated as follows:    
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The constant csn refers to the sloshing damping, which may be attributed to the viscosity of the fluid, as well as an 
additional value provided by the baffles. 
 
The distance between the sloshing mass and the CG of the tank is given as: 
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and the expressions for determining the fixed mass and its position are, respectively, 

n

0 liq s,i s,i

i 1

m m   m h 0

=

= - =å  (8) 



  

n

0 s,i s,i

0 i 1

1
h   m h 0

m
=

= - =å  (9) 

The total mass of the liquid is a function of the fill ratio (FR) of the tank and the density of the liquid, liq,    

π
ρ2
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4

 (10) 

Most propellant tanks on an LV have upper and lower elliptical domes, as shown in Figure 2. The parameters of an 
equivalent mechanical model for sloshing in a vertical cylindrical tank with a flat bottom cannot be directly applied to 
the dome area. One way to address this issue is to map a cylindrical tank with upper and lower domes to a cylindrical 
tank with flat top and bottom, while maintaining an equivalent liquid volume (Jang et al., 2013; Xin et al., 2018). Given a 
tank radius r0, a dome depth hd, height of the cylindrical part, hb and total tank length od H, the expressions for the 
correction of the dome region according to Jang et al (2013) are given as:  
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Figure 2 Correction of the sloshing parameter for a cylindrical tank with elliptical domes, Jang et al (2013) 

For the case of liquid level in the upper dome area, the equivalent radius of the tank r0
∗   and height of the liquid h∗ for 

a cylindrical tank with a flat top and bottom can be derived as, 
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When the liquid level is in the cylindrical section, as shown in Figure 2, the equivalent tank radius r0
∗  and liquid height 

h∗for a cylindrical tank with a flat top and bottom can be derived as,  
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For the case of the liquid level in the lower dome area, the equivalent radius of the tank r0
∗  and height of the liquid 

h∗for a cylindrical tank with a flat bottom can be derived as, 
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2.1.2 Damping – ring baffles 

It is known that damping caused solely by viscous effects is quite small; therefore, a method to add damping into the 
system may be necessary. It is also known that baffles provide a significant increase in damping when the liquid free 
surface is close to them. 

In the work herein presentes, the damping provided by ring baffles is evaluated through the analogy of the drag 
exerted by a flat plate in an oscillatory flow, as analyzed by Miles (1958) and Dodge (2000). Figure 3 illustrates the sche-
matic of the ring baffles, considering that the propellant oscillates in the fundamental sloshing mode, with the flow di-
rection assumed to be normal to the ring. Damping calculations are given by Equation 14 below. 
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Figure 3 Schematic of ring baffle with fundamental sloshing mode 
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where hs is the depth of the damper relative to the free surface, r the radius of the tank, C1 is the ratio of the damper 

area to the cross-sectional area of the tank, d the amplitude of the wave of the first sloshing mode, and w is the width of 
the damper. 

The damping  decreases as the ring baffle is more submerged in relation to the free surface. For surface proximity 
effects, when the ring baffle is above the free surface for a distance equal to or greater than the amplitude of the sloshing, 
the sloshing wave does not intercept the damper and there is no damping. As the liquid level drops, the damping gener-
ated by the ring baffle approaches its maximum.   

A ring baffle system must be designed to meet the design requirements. The damping provided by a ring baffle is non-

linear, and the damping  depends on the amplitude of sloshing d as well as d on . Therefore, efforts are made to estab-
lish the largest sloshing amplitude that can be reasonably assumed. A sloshing wave begins to exhibit noticeable nonlin-
earity when the amplitude exceeds approximately ten percent of the tank diameter. Consequently, the largest range of 
feasible sloshing that can be reasonably assumed is 0.2r (unless nonlinear effects can be analyzed), Dodge (2000). With 

a value of d=0.2r, Equation (14) is reduced to:    
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The Equations (15) and (16) allow one to determine the spacing between the baffles to meet the specified minimum 
damping requirement for a given width of the dampers. Figure 4 displays the schematic design of the arrangement of 
the ring baffle within a tank. The graph on the left of this figure shows the predicted damping relative to the free surface. 

As can be seen, the minimum damping occurs when the free surface is slightly below (by 0.8d) the nearest ring baffle 
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Figure 4 Design of a ring baffle system, Dodge (2000) 

2.2 Dynamic structural model   

The equation of motion of a discrete mechanical system with N degrees of freedom is given by, Craig and Kurdila 
(2006): 

 B B B B B B+ + =&& &M z C z K z F  (17) 

We can then write the vector of displacements zB as a function of the system modes that are stored in the columns 

of the matrix  as: 

(t)z ΨηB=  (18) 

Where (t) are the generalized or modal coordinates. Substituting Equation (18) into Equation (17) yields: 
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Pre-multipling all terms in the equation above by the transpose of matrix T we obtain: 
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If the modes are normalized by the mass matrix, we have that: 
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If the damping is proportional, by substituting Equations (21) and (22) in (20) we obtain the equation of motion in 
generalized coordinates:  
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where: f(t)= TF(t) and the matrix  B contains on its principal diagonal the modal damping factors of the modes present 

in . 

2.3 Equations of motion of the launch vehicle 

The equations of motion of an LV controlled by thrust vectoring at its rear, with liquid fuel tanks and an equivalent 
mass-spring-damper mechanical model to represent the sloshing motion in its tanks, are presented here. The equations 
of motion for an LV are derived by writing the equations for kinetic, potential, and dissipative energy and then applying 

Lagrange's equation (Garner, 1964; Greensite, 1970; Barrows and Orr, 2021). The Figure 5 shows the coordinate system 
used in the analysis. The coordinate axes XI, ZI represent the stationary inertial system, while the axes xb,zb represent the 
body system located at the CG of the LV. For simplicity, the motion of the LV is assumed to occur in the pitched plane 
given by xb,zb. 
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Figure 5 Simplified Dynamic Model of the Flexible LV 

 The linearized equations of motion produced by Barrows and Orr J. (2021) for translational, rotation, sloshing, and 
bending, are employed as presented below:   

(a) Translation 
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where MT is the total mass of the vehicle (including engines and the sloshing mass), z̈I is the inertial acceleration in the 
z-direction,msj is sloshing mass of the jth tank, z̈sj the sloshing acceleration of the jth tank, g̅ is the longitudinal sensed 

acceleration, y, is the pitch angle of the undeformed centerline relative to the trajectory frame, CNa, is the aerodynamic 
normal force coefficient slope , q̅ is the dynamic pressure, Sref is the reference aerodynamic area, ), żI is the inertial 

velocity in the z-direction, V is the absolutre relative velocity, F is the thrust of all engines,syβi is the rotation mode about 

pitch axis at the gimbal position,i is the displacement amplitude of ith flexible mode, FR is the thrust of gimbaled en-
gines,βEy is the engine angle about the pitch axis, SE,is the first moment of inertia of engine about its gimbal(expressed 



  

in engine frame), β̈Ey is the engine angular acceleration about pitch axis and Vwz is the  velocities of the wind in the z-
direction .  

 

The acceleration g̅ is expressed as:  
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Where D is the drag force expressed as:  
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where Cd   is the drag coefficient.  

(b) Rotation  

( )

yω σI
y yy sj sj sj sj sj N ref cp R Ey y i i

j

N ref

z i i G E EG Ey cp wz

z
I m x z = m gz + C q S X X F + F

V

C q S
+ F + X S I X V

V

b

b

æ ö÷ç ÷- - b hç ÷ç ÷ç÷

ö

è ø

h - b

æ ÷ç ÷f + +ç ÷ççè ø

-

å å å

å

&
& &&

&&

G
j i

i

a

a
y

 (27) 

where ω̇𝑦 is the angular acceleration of the body, Iyy, is the moment of inertia of the LV (including motors and sloshing 

mass) with respect to the origin, xsj is the equilibrium position of the sloshing mass in x-direction, zsj, the sloshing dis-

placement of the jth tank, XCP is the center of pressure measured from the origin, XG is the gimbal coordinate, yzβi, is the 
z-bending mode shape of ith mode at gimbal, IEG is the moment of inertia of engine about the gimbal center.     

(c) Sloshing 
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Where sj  is the sloshing damping factor of the jth tank, sj is the sloshing natural frequency of the jth tank, żsj the velocity 

sloshing of the jth tank, ϕ̈𝑦 is the angular acceleration of the body, η̈𝑖 is the acceleration amplitude of ith flexible mode. 

(d) Bending 
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Where Bi the damping factor of ith bending mode, Bi natural frequency of the ith bending mode, η̇i is the velocity am-

plitude of ith flexible mode,ψzji is the z-bending mode shape of the ith mode at the slosh location and C Ni is the aerody-

namic coefficient of bending, expressed as:  
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where (cC Na/cx) represents the derivative of the normal force coefficient along the length of the LV. 



  

2.4 Equation of motion in a state space form  

The equation of motion for a linear system in state space form is given by: 
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and the first equation can be solved to an explicit system of linear equations, 
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where the matrix  𝐄 contains the mass and inertia parameters of the system. The matrix  �̃� , �̃� , 𝐂 and 𝐃 can be used in 
the design of control systems and stability analysis. 

The state vector of the system comprises the rigid body states of the LV, the sloshing states of the propellant, and the 
generalized elastic coordinates, such that, 
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where 𝐱r  is the rigid body state vector, 𝐱s is the sloshing state vector, and 𝐱f is the bending state vector. These state 
vectors are given by,   
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The inputs consist of  βEy , β̈Ey and Vwz , described previously. Therefore, we have:  
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The integral form of the model given by Equation (31) with its submatrices is expressed as: 
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According to Barrows and Orr (2021), in order to facilitate the conversion of equations into matrix for, the equations 
of motion were grouped first by the dynamic terms followed by the inputs. The accelerations are placed on the left side 
of the equations, followed by the velocities and displacements on the right side of the equations, followed finally by the 
inputs. It is assumed that 𝐦B = 𝐈. It is important to note that for small disturbances ϕ̇𝑦 = ωy. 



  

Next, the submatrices of Equation (39) are presented for an LV with two fundamental sloshing modes, one for each 
tank, and three bending modes, which is considered sufficient according to Greensite (1970). 
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Submatrices of 𝐀 :  
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The matrices  𝐂  and 𝐃 below are arranged to determine the transfer function between the pitch angle ϕy and the 

gimbal angle of the engine βEy, in order to analyze the stability of the LV with sloshing effects  

1 0 0 0 0 0 0 0 0 0 0 0 0é ù= ê úë û
C  (55) 

0 0 0é ù= ê úë û
D  (56) 

2.5 Stability  

The simplest control law required to stabilize the attitude of an LV, without damping in pitch, is known as propor-
tional-derivative (PD) control. Its control law can be expressed in the following form, as described by Barrows and Orr 
(2021): 

βe p y D yk k= - - &   (57) 

where βe is the gimbal angle of the engine, for open-loop stability analysis, ϕy the pitch angle, ϕ̇y its rate of change. The 

gain kp (proportional gain) and kD (the gain derivative), determined according to Barrows and Orr (2021), such as:  
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Where wc and c are the frequency and control damping ratios, respectively, that meet the design criteria. These param-
eters can be optimized according to the performance index.  

One of the results obtained by Bauer (1967) and Greensite (1970) is the determination of a region defined as a danger 
zone, for a LV without aerodynamic effects, with PD attitude control with a single dominant slosh mass. Therefore, if the 
slosh mass is located between the center of gravity (CG) and the center of percussion (CP) of the LV, instability will occur. 
For systems with two or more tanks, with frequencies close enough to dynamically couple, this result does not necessarily 
hold. However, it is still a good guideline to check which tanks have the sloshing mass located in that region in order to 
predict the need for dampers for greater liquid propellant damping, Ottander et al. (2018). According to Greensite (1970), 
the center of percussion of an LV, Figure 6, is determined as:  
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G T

I
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=  (60) 

where Iyy, XG and MT are described in Section 2.3.  



  

 

 

Figure 6 Danger zone 

According to Pei (2021), if the sloshing mass is within the danger zone, the rigid body control condition becomes 
unfavorable. In this case, the control actuator indirectly adds energy to the sloshing mode while attempting to control 
the attitude of the rigid body. 

  
Figure 7 highlights the difference between a stable and unstable sloshing mode in a root locus plot. In a stable sce-

nario, the natural frequency p of sloshing pole is greater than zero, and the angle of departure is directed toward the 
left half-plane (LHP), Figure 7(a). Thus, the closed-loop sloshing pole is stable for all values of the feedback gains. In an 
unstable scenario, the sloshing pole is below zero and the angle of departure is directed toward the right half-plane 
(RHP), Figure 7(b). Additional damping is required to shift the root locus to the LHP, ensuring that the closed-loop sloshing 
pole remains stable, as depicted in Figure 7(c). In a design case, damping can be introduced through the use of baffles.  
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Figure 7 Root locus illustration: (a) stable sloshing mode (b) unstable sloshing mode (c) stabilization with increased damping 

3 CONCEPTUAL LAUNCHER VEHICLE 

3.1 Definition  

In order to carry out the analyses on the effect of sloshing on the stability of a Micro-LV proposed for this work, it was 
decided to develop a conceptual LV of this category, since most of the data related to launch vehicles is confidential. 

Sizing a launch vehicle can involve many different approaches and employ a variety of mass estimation techniques 
Edberg and Costa (2021). The strategy employed in this work uses a top-down approach involving the ideal propellant 
and structural masses for each stage of the LV (based on initial assumptions), designing the inert mass components of 
each stage (tanks, engines, etc.) and then comparing their masses with those initially estimated, analyzing the perfor-
mance through the approximate calculation of the trajectory, in order to determine feasibility. Some iterations are then 
carried out until a satisfactory design solution is reached, Motiwala et.al (2014) 
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XCP
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3.2 Speed Requirements 

The velocity requirement for space launch systems, termed v, is the result of the difference between the initial 
velocity and the terminal velocity. To determine the speed acquired by a rocket in an environment free of aerodynamics 
and gravitational forces, Tsiolkovsky's equation can be used, Edberg and Costa (2021), 

Δ 0 0
e 0

f f

m m
v =  v ln = g Isp ln

m m

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (61) 

where v is the acquired velocity, ve is the effective exhaust velocity of the gases from the nozzle, m0 is the initial mass 
and mf is the final mass, g0=9.80665 (m/s2) and ISP is the specific impulse. In this way, the LV will acquire the highest 
velocity when all the propellant is consumed.  

However, during the ascent flight phase, the LV is subjected to opposing forces. The most significant are the gravita-
tional and aerodynamic force, so we have:  

Δ Δ Δlosses grav dragv = v + v  (62) 

Considering a circular orbit, the terminal velocity for the payload to remain in orbit, it is given by (Edberg and Costa, 
2021), as:  

2
0

orbit

g R
v

R + h
=  (63) 

where R=6378 km is the Earth ‘s average radios, and h is the elevation of the orbit. 
Thus, this leads to an ideal or design velocity given by:   

Δ Δ Δ0
idelal 0 orbit losses
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 (64) 

3.3 Launch Vehicle Parameters 

The process for calculating the mass of an LV begins with determining the basic parameters of the vehicle. We will 
assume that the following quantities have been provided or selected for each stage.  

From Equation 61, we can define the parameter   as a mass ratio in the form: 

μ
s p 0 PL0 0

f 0 p s PL

m m m mm m
 =  

m m m m m

æ ö + + -÷ç ÷ç = =÷ç ÷ç ÷ç - -è ø
 (65) 

Where ms is the structural mass or inert mass, mp the propellant mass and mPL the payload mass.  

Another necessary parameter consists of the structural mass factor defined as:  

σ s s

s p 0 p

m m
 =  

m m m m
=

+ -
 (66) 

For a multistage LV, it is assumed that for each stage values of v, ISP and s , are necessary for independent calcula-
tions. It should be considered that the payload for the kth stage of N stages is the sum of the masses of the fully loaded 
stages above the kth stage and the payload. In such a way:   



  

( ) ( ) ( )PL1 s2 p2 s3 p3 sN pN PLm m + m + m + m +…+ m + m + m=  (67) 

By substituting Equation (65) into Equation (64), to find the mass ratio of the  uppermost stage such that: 
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One can calculate the mass of the propellant mp as:  
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1
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In this way, the structural or inert mass ms is then calculated: 
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1
=

-
 (70) 

This process is repeated for each of the vehicle's stages, until the first stage is reached. 

Another parameter required for LV sizing consists of the rocket thrust-to-weight ratio which is equal to the total thrust 
produced divided by the total mass of the rocket: 

0

T T
=

W g m
 (71) 

To make the rocket take off possible the ratio, (T/W) must be larger than 1. 

 3.4 Design considerations  

A conceptual Two-Stage to Orbit (TSTO) Micro-LV was implemented. This configuration has lower complexity when 
compared to other multi-stage LV due to the minimum number of separation events, cost, and risk of failure. Design 
characteristics were derived from similar Micro-LV, such as Falcon 1 (2028), Astra (2022), Electron (2020), and Firefly 
(2022), as well as the launch vehicle presented in Zuhang and Yuli (2021). It was assumed that the vehicle will be launched 
from the Alcântara Space Center (CEA) with latitude of 2.3°S and longitude of 44.4° W in a circular Low Earth Orbit (LEO) 

of 300 (km) altitude and inclination of 51.6° with a payload mass of 100 (kg). Other assumptions include, ISP, s,,T/W and 
number of engines for each stage. Table 1 presents the initial parameters of the Micro-LV, where Ø is assumed diameter.   

Table 1 Micro-LV initial design parameter  

Stage Propellant Isp (s) T (kN) T/W s  Engines Ø (m) 

1 *LOX / RP-1 291.0 165 1.3 0.09 3.28 1 1.0 

2 LOX / RP-1 321.8 17.7 0.6 0.11 7.35 1 1.0 

* LOX (oxidizer) and RP-1 (fuel:) 

 



  

  4 RESULTS 

4.1 Conceptual vehicle  

The definined parametrs are used to complete the design. Mission requiremets are met with an optimized trajectory 
calculation. Table 2 presents the final data for the respective Micro-LV stages and Figure 8 shows the defined dimensions.  

Table 2 Launch Vehicle Parameters  

Stage Propellant ISP (s) T (kN) T/W *MR mp (kg) ms (kg) v (km/s) Engines 

1 LOX / RP-1 291.0 165 1.3 2.4 8727.68 846.28 2.04 1 

2 LOX / RP-1 321.8 17.7 0.6 2.4 2573.54 305.35 5.20 1 

*MR: mixture ratio (O/F). 

1000

RP-1 LOX RP-1

6100

200

3600 1300 1900

200

1200

PLLOX

Second stageFirst stage

17300

Ø
 1

1
0

0

250

[mm] [mm]

 
Figure 8 Layout of Micro-LV  

The aerodynamic coefficients, Figure 9, were calculated for the flight of the first stage by using the Missile Datcom 
software, Blake (1998). The cross-section area of the Micro-LV was considered as the reference Sref. The ogive nose was 
selected due to its lower drag cofficiets in flight regimes  

 

  

(a) (b) 

Figure 9 Aerodynamic coefficients: (a) drag coefficient (b) slope of normal force coefficient  

4.2 Optimized trajectory 

According to Motiwala et.al (2014), an optimized trajectory calculation is a key aspect in the design of an LV. In the 
present work, the trajectory was calculated using the Astos® (2011) software. The calculation method seeks the optimum 
point of an objective function, which consists of reaching the desired orbit, while maximizing efficiency and minimizing 
fuel consumption. 

Figure 10 shows some parameters obtained for the optimized trajectory for the Micro-LV flight. The performance 
characteristics required for the satellite deployment mission were achieved. Figure 10 (a) shows the desired altitude of 

300 (km). Figure 9(b) shows v1 of 2.04 (km/s) at 131 seconds, marking the end of the first stage burn, and v2 of          
5.31 (km/s) with the final mission time of 943.7 seconds, resulting in a final velocity of 7.73 (km/s). Figure 10 (c), the final 
mass of 406 (kg) subtracted from structural mass of the second stage of 305.35 (kg), Table 2, it yelds the payload mass 



  

of 100.65 (kg), meeting the mission requirements. The Figure 10 (d) shows the longitudinal acceleration, whose values 
directly affect the calculations of sloshing frequencies, as previously shown in Equation 2.   

 

  
(a) (b) 

  

(c) (d) 

Figure 10 Trajectory parameter: (a) altitude (b) inertial velocity (c) total mass (d) longitudinal acceleration  

4.3 Sloshing 

Due to the consumption of propellant during the flight, the sloshing parameters for the LOX and RP-1 tanks were 
calculated for fill ratios range 0% ≤ FR ≤ 100%, in increments of 10%. As outlined in Section 2.1, the sloshing parameters 
depend on the zeros of the Bessel function, as indicated in Equation 2, which are related to the respective modes. For 
comparison purposes, the first five modes of vibration were considered. 

The Figures 11 (a) and 11 (b) show the sloshing masses curves of the for the LOX and RP-1 tanks, respectively. It can 
be observed that the sloshing mass values of the first mode are higher than those of the other modes.  Therefore, the 
analyses presented here focus exclusively on the first mode of sloshing. 

 

     
(a) (b) 

Figure 11 Sloshing Parameters (a) Sloshing-LOX Mass (b) Sloshing Mass-RP-1  



  

The sloshing frequencies derived from Equation 12 are affected by the longitudinal acceleration of the Micro-LV. As 
can be seen, the sloshing frequencies values of LOX and RP-1 tanks, Figures 12 (a) and (b), respectively, are quite similar 
due to the equal diameters.  

  
(a)  (b) 

Figure 12 Sloshing Parâmeters: (a) sloshing-LOX frequence (b) RP-1 sloshing frequence  

The position of the sloshing masses relative to CG of the LOX and RP-1 tanks were calculated using Equation 7. The 
values of the fixed masses and their respective positions were calculated according to Equations 8 and 9, respectively. 
Their positions were properly located within the Micro-LV model, as shown in Figure 8. These procedures were necessary 
for calculating the mass properties and moments of inertia of the Micro-LV for the finite element model (FEM). 

4.4 Stability  

The analysis focused solely on the flight of the first stage. Due to the proximity of the sloshing frequencies of the two 
tanks, the Bauer’s analytical criterion (1967) may lead to inaccurate results, as noted by Barrows and Orr (2021). A 
Matlab® code (2018a) was developed to implement the state space formulation described in Section 2.3.  The dynamic 
model transfer functions relating the pitch angle ϕy and engine angle βEy  have been determined. Stability analyses with 

sloshing effects were performed in an open loop, considering a PD controller.    

4.4.1 Danger zone    

Figure 13 shows the positions of the sloshing masses for the LOX and RP-1 tanks along the length of the Micro-LV. It 
is noted that for the whole fill ratio range (0% ≤ FR ≤ 100%), only the sloshing mass of the RP-1 tank is located within the 
danger zone. Consequently, the analyses were performed only for this mass.  

4.4.2 Controller Parameters     

For attitude control, a PD controller was assumed. It was based on the Micro-LV rigid body data taking its aerodynam-
ics into account. Table 3 below presents the gains considered for the fill ratio range of interest. The values of the gains 

were determined according to Equations 58 and 59, Section 2.4. A control frequency of wc=1.42 (Hz) defined as one-fifth 

of the lowest bending frequency (see Figure 17(b)), as outlined by Mooij and Gransden (2016) and damping of c = 0.805 
were considered.  
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Figure 13 Danger zone of the Micro-LV 

 

Table 3 Controller Parameters 

Controller 
Fill Ratio 

40% 50% 60% 70% 80% 90% 

Kp 9.47 10.53 11.54 12.11 12.45 12.90 
kD 1.83 2.03 2.24 2.40 2.50 2.59 

4.4.3 Verification calculations   

Studies presented by Ottander et al. (2018) were used to validate the calculations performed by the code developed. 

In Figure 14, the expected root locus for the open-loop model of the Micro-LV is presented for s=0. The instability due 
to the sloshing effect can be observed on the imaginary axis. The angle of departure is directed toward the RHP, according 
to Pei (2021), Section 2.4. 

 

   

(a) (b) (c) 

Figure 14 Verification Parameters: (a) LV data (b) original root locus (c) root locus reproduced 



  

4.4.4 Sloshing Effects Without Flexibility   

 In Figure 15, it can be observed that as FR increases, the frequencies (imaginary part) on the root locus, decrease, 
while the real part increases, tending to shift toward the RHP. This behavior indicates that with larger volume of propel-
lant in the tanks, the instability due to sloshing effects becomes more imminent. This fact is evident upon reaching FR= 
90%, as shown in Figures 15 (c) and (d), when the sloshing frequency associated with the open-loop transfer function 
zero becomes higher than its pole frequency, characterizing the sloshing instability. 

 

           
(a) (b) 

   

    
(c) (d)   

Figure 15 Effects of sloshing without flexibility with s=0: (a) FR=40% and 50% (b) FR=60% and 70% (c) FR=80% and 90%                                     
(d) detail  FR=90% 

4.4.5. Effects of Sloshing with Flexibility  

 The vehicle's flexibility was obtained by carrying out a structural analysis. Since the dynamic model is axisymmetric, 
the natural frequencies and corresponding modal shapes are uniform in the lateral directions. The Micro-LV is modeled 
with finite beam elements and concentrated parameters of masses and springs as shown in Figure 16.  

The FEMAP Nx Nastran® (2014) software was employed to determine the eigenvalues and eigenvectors considering 

modal damping B = 0.05, calculated for the range 0% ≤ FR ≤ 100%. Figure 17 (a) shows the evolution of frequencies for   
0% ≤ FR ≤ 100%. Figure 17 (b) shows the modal shapes of the first three bending modes for the condition of FR=90%,  
to be considered in the stability analysis.    
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Figure 16 Layout of the Micro-LV and the corresponding finite element model. 



  

 
 

(a) (b) 

Figure 17 Modal analysis (a) natural frequencies of the Micro-LV for 0% ≤ FR ≤ 100%. (b) bending modes of the Micro- LV for 
FR=90%.    

Figure 18 shows the root locus for the first three bending modes of the Micro-LV.  It is observed that the root locus is 
in the LHP with frequencies far from the imaginary axis indicating that the Micro-LV has adequate damping. Comparing 
the frequency value of the first bending mode, which is 6.75 (Hz) as seen in Figure 17(b), with the sloshing frequency of 
the RP-1 tank at 1.1 (Hz), Figure 12(b), we obtain a frequency band of 5.65 (Hz). Such a value avoids instabilities related 
to resonance.  

   
(a) (b) (c) 

Figure 18 Effects of sloshing on flexibly with s = 0 and FR=90%: (a) first bending mode (b) second bending mode (c) third bending 
mode.  

Figure 19 shows the root locus regions of the LOX and RP-1 tanks. For the LOX tank, Figure 19(a), the behavior is not 
affected by flexibility. Regarding the RP-1 tank, there is a slight tendency for the flexibility of the Micro-LV to damping 
the sloshing effect, but not significantly enough to mitigate the instability. 

 

  
(a) (b) 

Figure 19 Effects of flexible on sloshing with s = 0 and FR=90%: (a) LOX (b) RP-1  



  

4.4.6 Mitigating the effects of sloshing  

The methods for mitigating the effects of sloshing can follow an active or passive approach. In the active form, addi-
tional elements are employed within the control system in the form of filters, with the advantage of not imposing any 
penalty in terms of weight. However, it is not always possible to synthesize such systems. Passive methods are safer, but 
they incur a weight penalty, as they are implemented through baffles introduced internally within the tanks, Ringland 
(1968).  

Mitigating the sloshing effects is addressed in Section 2.1.2. For the analyses, the structural damping of the LV body 
was disregarded for the analysis, since flexibility did not show significant improvement in sloshing damping, as can be 

seen in Figure 18(b). Initially, viscous damping was considered with values of s1 = 0.0002 and s2 = 0.0007 for LOX and 
RP-1, respectively, according to Mooij and Gransden (2016). The minimum damping requirement can be determined by 

varying the values from s2 = 0.0007, remaining s1 = 0.0002 as a fixed value. The minimum damping value can be selected 
for regions where the root locus is entirely located in the LHP.     

Figure 19(a), shows that the variations of s2, RP-1 tank, affect the root locus of the LOX tank, which evidences the slosh-

ing coupling between the tanks. Figure 20(b) shows that from the value of s2 = 0.0014, a minimum damping requirement 
can be established. 

  

(a) (b) 

Figure 20 Mitigation of sloshing effects through damping variation for FR=90% (a) LOX (b) RP-1 

 

For a preliminary design of the RP-1 tank ring baffles, the minimum damping requirement is considered with the value 

of s2 = 0.0015, in order to cover any uncertainties. From Equation 15, we have that s2 =  , and combining Equation 16 
with a value of w = 0.025 (m), we determine a distance between the ring baffles of hs = 0.357(m) with a total of 9 baffles, 
for the height of the tank with HRP-1 = 3.6 (m), as shown in Figure 21.  This figure shows the design scheme of the ring 
baffles along the entire length of the RP-1 tank. In this case, at least the first three upper rings can be considered, in order 
to cover the FR=90%. 

 

   

Figure 21 Diagram of the design of the ring baffles: RP-1. 



  

5 REMARKS AND CONCLUSIONS 

This paper presents a methodology for studying the effect of liquid propellant sloshing on the stability of a launch 
vehicle. The methodology allows one to identify the fill rates that lead to instability and to assess the amount of damping 
required to mitigate the unstable behavior. Then, it is possible to define the number of ring baffles (and its size) capable 
of introducing the necessary damping.  

To carry out a case study it was necessary to face the lack of design data for this class of vehicles, for reasons of 
confidentiality. It was then decided to hold the preliminary design of a concept vehicle. The data from this project can 
be useful as a reference for future similar studies by other authors. The phase of the flight analyzed is in the initial part 
of the upward trajectory, when the launcher is subject to atmospheric disturbances and is propelled by the first stage. 

Sloshing was included in the vehicle equations of the motion by means of equivalent mass-spring-damping mechanical 
models. Through root locus analyses peformed with MATLAB routines, it was possible to verify that sloshing would gen-
erate instability only in the fuel tank and in the moment that the filling ratio of this tank is reduced to 90%. The point 
defined by the position of the tank sloshing mass of fuel and the fill ratio of 90% belongs to the danger zone for sloshing 
by Bauer's criterion. However, according to this criterion, several other fill ratios would lead to instability, which was not 
confirmed by the numerical models. This corroborates the limitation of Bauer's criterion for analyzing a launcher with 
two tanks.  

It was possible to also verify the coupling between the dynamic behavior of the fuel and oxidizer tanks regarding 
sloshing, with the damping of one influencing the other. Additionally, it was observed that, in the studied case, the vehi-
cle's flexibility acted slightly stabilizing in relation to sloshing. The relationship between the instability caused by sloshing 
in the vehicle dynamics and the propellant tank filling ratio was investigated, and the instability point was identified.  

The methods for mitigating the effects of sloshing can follow an active or passive approach. In the active form, addi-
tional elements are employed within the control system in the form of filters, with the advantage of not imposing any 
penalty in terms of weight. However, it is not always possible to synthesize such systems. Passive methods are safer, but 
they incur a weight penalty, as they are implemented through baffles introduced internally within the tanks. In the pre-
sent work, the use of ring baffles was proposed as solution to mitigate the unstable behavior. Finally, the number of 
necessary rings and their dimensions were defined. 

A possible future work is to study the flight of the second stage and comparing the sloshing effect with filtering tech-
niques, to allow decision-making in the design development phases, since the dampers can penalize the satelization 
mass.  

 

Editor: Pablo Andrés Muñoz Rojas 
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