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Abstract 
This paper presents a precise and effective formulation for modeling and simulating impact with friction for 
planar multibody systems. Nonlinear equations of motion are formulated using normal impulse at contact 
point as a time-like independent variable. The derived equations demonstrate that sliding during impact 
period could persist, or it could cease leading either to a persistence of sticking or to a reverse sliding. To 
distinguish between these different modes, Routh’s incremental method is employed. A critical coefficient of 
friction, dependent solely on the system configuration, is identified and used to determine whether the 
contact mode is sliding or sticking. Three definitions of coefficient of restitution are introduced to model the 
plasticity of the impact. Analytical algebraic solutions and a computational strategy are offered to identify the 
mode of impact and to evaluate the impact variables. An example is thoroughly examined to demonstrate the 
effectiveness of the formulation, validate the algebraic solutions, and evaluate the outcomes of the three 
definitions of the coefficient of restitution. 
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1 INTRODUCTION 
The modeling and simulation of many multibody systems often involve impacts with friction. These contact-impacts 

phenomena can result from unexpected collisions or be inherent to their functional processes. Such phenomena are 
prevalent across nearly all fields of engineering. Intended impacts occur in various applications, such as walking 
machines, spot welding, drilling devices, tool manipulation, forging machines, writing on surfaces, assembling 
components, cooperative manipulators, and impulsive manipulation. 

Impacts generate large forces, energy dissipation, and abrupt changes in velocities and accelerations, among other 
challenges. Additionally, friction management is complex due to the existence of two distinct modes: sticking and 
slipping. The nature of the problem, and consequently the solution, differs between these two modes. For example, a 
rigid body sliding on a surface could encounter the Painlevé paradox if friction is considered, a paradox that was solved 
recently and still is a focus of considerable research (Charles et al., 2018; Elkaranshawy et al., 2017a). When impact 
occurs alongside friction, the discontinuity of Coulomb friction introduces nonlinearity, further compounded by the 
nonlinearity caused by velocity discontinuities. 

During planar impact, sliding may cease and continue until the end of the impact period or restart in the opposite 
direction. As a result, friction force laws cannot be directly applied to friction impulses calculated throughout the impact. 
However, the conventional approach to modeling rough collisions assumes that the contact point either continuously 
slides or remains non-sliding throughout the collision. This method has been widely used in classical dynamics texts, such 
as those by Whittaker (1904), Goldsmith (1960), and Kane and Levinson (1985). Recognizing that the sliding may cease 
or change direction during a collision, Routh (1897) proposed an incremental method that differentiates between various 
types of contact. He applied a semi-graphical, semi-algebraic technique to solve planar rough collisions. Kane and 
Levinson (1985) considered a case in which sliding reversed direction during a planar collision, and they observed that 
Whittaker’s method could lead to an increase in energy. To address this issue, Keller (1986) and Wang and Mason (1992) 
advocated returning to Routh’s method. They demonstrated that using Newton’s coefficient of restitution with Routh’s 
method fails to resolve this energy inconsistency, whereas employing Poisson’s coefficient of restitution with Routh’s 
method prevents the possibility of energy increase during a collision. Meanwhile, Stronge (1990) showed that with the 
Poisson-Routh method, the normal component of the impulse can dissipate energy even in purely elastic collisions. He 
proposed an energetic coefficient of restitution that works with Routh’s method to resolve the energy inconsistency. A 
three-dimensional impact with friction is more complicated as the contact point continuously changes its sliding 
direction. Hence, sliding velocity in three-dimensional is the primary concern in many research work (Battle 1996; 
Elkaranshawy et al. 2017b; Jia and Wang 2017). 

Impact with friction can be considered among the most critical challenges modeled in multibody systems. Rigorous 
mathematical models were developed for the dynamics of multibody systems with impact and friction (Battle 1996; 
Elkaranshawy et al. 2017b; Aghili 2020, Elkaranshawy 2007; Elkaranshawy 2011; Peng et al. 2020; Passas and Natsiavas 
2022). Admirable review papers have been composed (Corral et al. 2021; Flores 2023; Flores et al. 2023). However, 
analytical solutions are only readily available in three-dimensional cases for certain special scenarios. While it is possible 
to develop analytical solutions for planar multibody systems, only a few attempts have been made to create a general 
approach that can be easily applied to various multibody systems. For instance, Aghili (2020) developed a unified 
frictional impact model that is consistent in both slip and stick states. However, the model needs to impose specific 
constraints on the coefficient of friction and the coefficient of restitution. 

In this article, single-point rough collisions in planar rigid multibody systems are considered. Coulomb’s law of 
friction and the assumption of infinite tangential stiffness are applied. The Newton’s, Poisson’s, and energetic coefficients 
of restitution are used to determine the end of the collision, and Routh’s incremental method is employed to model the 
contact modes at the collision point. The equations of motion are derived, with the normal impulse serving as the 
integrating variable instead of time. It is shown that algebraic solutions for planar multibody collisions exist. The 
equations necessary to identify these invariant directions are derived. Without losing generality, assuming a sliding start, 
the conditions for reaching the sticking mode are determined, along with the coefficient of friction required to maintain 
this non-sliding mode. If the friction is not sufficient to keep the non-sliding, the sliding resumes in the reverse direction. 
A classification of all possible sliding behaviors is provided, and algebraic solutions and computational strategy are 
presented. A numerical simulation for an illustrated example is conducted to demonstrate the effectiveness of the 
formulation and verify the algebraic solutions. Additionally, it is used to assess the output of the three definitions of the 
coefficient of restitution. 
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2 EQUATIONS OF MOTION 

The n-dimensional change in generalized joint velocities q  during single-point rough impact can be written as 

1Δ T−=q I M J  (1) 

The differential form of this equation is: 

1 Td d
dt dt

−=
q I

M J  (2) 

where ( )qM  is the inertia matrix of the multi-body system; ( ). n n×∈M R , [ ]Tn tI I=I  is the impulse at the impact 

point, and ( ) T
 =  

T Tq αJ β  is the Jacobian matrix that transforms generalized joint velocities to the velocity of the 

impact point [ ]Tn tv v=v  as 

=v qJ  (3) 

where nv  and tv  are the normal and tangential components of the velocity of the impact point respectively, and nI  and 

tI  are the normal and tangential components of that impulse respectively, 1 1
nv ×∈R , 1 1 1 1, ,  n n

tv × × ×∈ ∈ ∈R α R β R , 
1 1

nI ×∈R  and 1 1
tI ×∈R . 

Equations (2) and (3) gives: 

d d
dt dt

=
v ID  (4) 

where D  is the Jacobian inertia 3 3×∈D R  which depends only upon system configuration and is a symmetric positive 
definite matrix given by: 

1 T a c
c b

−  
= =  

 
D JM J  (5) 

where 

1 1 1,   ,   ,T T Ta b c− − −= = =α α αM β M β β M  (6) 

and 1 1a ×∈R , 1 1b ×∈R , 1 1c ×∈R . 

3 CONTACT MODES 

Coulomb’s friction law with stiction and infinite tangential stiffness at the impact point are assumed. Accordingly, 
one can recognize three contact modes as follows. 

3.1 Sliding Mode 

The following form is used in sliding mode: 
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σt n
D I

dI dI
dt dt

µ= −  (7) 

where Dµ  is the kinetic coefficient of friction and σ t
I

t

v
v

=  is the unit vector defining the sliding direction which could 

be either 1 or -1. Therefore 

 σt
D I

n

dI
dI

µ= −  (8) 

The scalar nI  has been selected as an impact parameter, since it is a time-like variable that starts with zero at the 
starting of impact and continuously increases through the impact period until the end of impact. Substituting Eq. (8) in 
Eq. (2) yields 

[ ]
s

1 1  σ TT
D I

n

d
dI

µ−= − =
q L
 s

IM J  (9) 

In this paper ()s  is preserved for the sliding while ()ns is preserved for the non-sliding (sticking). Substituting Eq. (8) 
in Eq. (4) yields 

1 cσ
s

n
D I s

n I

dv a
dI

µ
ζ

= − =  (10) 

1 σt
D I

n I

dv c b
dI

µ= − =


 (11) 

Equation (10) shows that nv  depends upon the sliding direction σ I , i.e., upon tv  . On the other hand, tv  does not 

depend upon nv  as can be seen in Eq. (11). 

3.2 Non-sliding Mode 

For the non-sliding (sticking mode), the following are valid: 

0,   0t
t

dvv
dt

= =  (12) 

Hence, substituting [ ]Tn tv v=v and [ ]Tn tI I=I in Eq. (4) and utilizing (12) gives 

1 1      t t n

n

dI dI dIb c or b c
dI dt dt

− −= − = −  (13) 

a critical coefficient of friction can be introduced as 

1
c b cµ −= −  (14) 

However, according to Coulomb friction law during non-sliding 
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t n
s

dI dI
dt dt

µ≤  (15) 

where sµ  is the static coefficient of friction. For sticking mode to persist once it has been reached, the following must be satisfied: 

s cµ µ≥  (16) 

Otherwise, the friction would not be enough to keep the non-sliding mode and the sliding restarts in an altered 
direction. Substituting Eq. (13) in Eq. (2) yields 

1 11
ns TT ns

n

d b c
dI

− − = − = 
q L


M J  (17) 

Substituting Eq. (13) in Eq. (4) yields 

1 1ns
Tn

ns
n F

dv a c b c
dI ζ

−= − =  (18) 

3.3 Reverse Sliding Mode 

For the reverse sliding mode, the equations given in section 3.1 are valid up to the vanishing of the sliding velocity. 
In this case: 

s cµ µ≤  (19) 

Hence, the friction would not be enough to keep the non-sliding mode and the sliding restarts in the reverse 
direction. In this case Eq. (9) to Eq. (11) can be rewritten as: 

[ ]
s

1 1  σ TT
D F

n

d
dI

µ−= − =
q L
 s

FM J  (20) 

1 cσ
s

n
D F s

n F

dv a
dI

µ
ζ

= − =  (21) 

1 σt
D F

n F

dv c b
dI

µ= − =


 (22) 

where 

σ σF I= −  (23) 

4 RESTITUTION LAW 

The deformation of an object involves two phases: compression and restitution. At the end of the compression 
phase 0nv = , and the restitution phase started after that and continues to the end of impact. The coefficient of 
restitution specifies the end of impact. There are three definitions for the coefficient of restitution: namely the Newton’s 
coefficient, the Poisson’s coefficient, and the energetic coefficient. These coefficients are given as 
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Newton’s coefficient 

ne
N

ni

ve
v

= −  (24) 

Poisson’s coefficient 

ne nc
P

nc

I Ie
I
−

=  (25) 

energetic coefficient 

2 nR ne nc
E

nc nc

W W We
W W

−
= − = −  (26) 

where niv  and nev  are the normal components of the velocity of the impact point at the beginning and at the end of 

impact respectively, ncI  and neI  are the normal impulses at the end of compression period and at the end of impact 

respectively; neW  ( 0nW ≤ ), ncW  ( 0ncW ≤ ) and  nRW ( 0nRW ≥ ) are the work done by the normal component of 
reaction force during impact period, compression period, and restitution period, respectively. Utilizing Eq. (10), Eq. (18), 
and Eq. (21) to obtain the following: 

0
 d ,    d  ne

ni ni

v

nc n ne nv v
I v I vζ ζ= =∫ ∫  (27) 

0 0
d ,   d   n neI I

n n n ne n nW v I W v I= =∫ ∫  (28) 

0

0 0
d  d ,   d  dnc ne ne

ni nc

I I v

nc n n n n nR n n n nv I
W v I v v W v I v vζ ζ= = = =∫ ∫ ∫ ∫  (29) 

where ( ) 0n nW W ≤  is the work done by the the normal component of reaction force during impact at any instant, and 

ζ  could be s
Iζ , s

Fζ , or ns
Fζ . Also, it can be noticed that friction does not dissipate work during sticking, while it 

dissipates work during sliding given by 

0 0
. ,   . ,   t teI I

t t t te t tW v dI W v dI= =∫ ∫  (30) 

where ,  t teI I  are the tangential impulse at any instant and at the end of impact respectively; ( ) ( ) 0  and  0t t te teW W W W≤ ≤  

are the work done by the friction force during impact at any instant and during impact period respectively. 

5 ALGEBRAIC SOLUTIONS AND COMPUTATIONAL STRATEGY 

Let us assume that the impact starts with sliding in a specific direction Iσ , if the tangential velocity vanishes during 

impact, the normal impulse nhI  and the normal velocity nhv  at this instant can be obtained by integrating Eq. (10) and 

Eq. (11). It is important to notice that during that period the tangential velocity persists in its original direction Iσ  until 

it vanishes, consequently s s
Iζ ζ=  is constant and 
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( )c σ
ti

nh T
I D I

vI
bσ µ

= −
−

 (31) 

nh
nh ni s

I

Iv v
ζ

= +  (32) 

If it is assumed that the tangential velocity does not vanish up to the end of compression phase, the normal impulse 
at this instant npI  can be obtained by integrating Eq. (10) as 

s
np I niI vζ= −  (33) 

Also, if it is assumed that the tangential velocity does not vanish up to the end of impact, the normal impulse at this 
instant  nfI can be obtained by integrating Eq. (10) as 

( )s
nf I nf niI v vζ= −  (34) 

It can be noticed that if nh nfI I>  the sliding will continue up to the end if impact, if nh npI I< the sliding halts in 

the compression period, and if np nh nfI I I< <  the sliding halts in the restitution period. Hence, , ,   np nh nfI I and I , which 

depend upon multibody system inertia and orientation, initial velocity, and coefficient of restitution, identify whether 
sliding or sticking is encountered. At the same time, if the sliding does not halt up to the end of impact, it is easy to prove 
that the three definitions for the coefficient of restitution are identical since s

Iζ  is constant. In this case, the normal 

velocity at the end of impact nfv  can be obtained from Eq. (24), Eq. (25), or Eq. (26) as 

nf niv ev= −  (35) 

where e  could be either Ne , Pe , or Ee . Accordingly, if the initial sliding in σ I  direction halts during the contact period, the 

sticking mode continues and persists as long as s cµ µ≥ , otherwise the friction would not be enough to keep the sticking 
mode, and a reverse sliding exists. Therefore, for this planar impact, one can recognize five types of motion given as: 

• Permanent sliding if nh nfI I> . 

• Non-sliding in restitution if np nh nfI I I< <  and s cµ µ> . 

• Reverse in restitution if np nh nfI I I< <  and s cµ µ< . 

• Non-sliding in compression if nh npI I<  and s cµ µ> . 

• Reverse in compression if nh npI I<  and s cµ µ< . 

If the tangential velocity vanishes in compression phase, the normal impulses at the end of compression period and 
at the end of impact, and the work done by the normal component of reaction force during compression and restitution 
can be obtained from Eq. (27) - Eq. (29) as 

( )s
nc I nh ni F nhI v v vζ ζ= − −  (36) 

( ) ( )s
ne I nh ni F ne nhI v v v vζ ζ= − + −  (37) 
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( )2 2 21 1
2 2

s
nc I nh ni F nhW v v vζ ζ= − −  (38) 

21
2nR F neW vζ=  (39) 

While, if the tangential velocity vanishes in restitution phase, these quantities can be obtained from Eq. (27) - Eq. (29) as 

s
nc I niI vζ= −  (40) 

( ) ( )s
ne I nh ni F ne nhI v v v vζ ζ= − + −  (41) 

21
2

s
nc I niW vζ= −  (42) 

( )2 2 21 1
2 2

s
nR I nh F ne nhW v v vζ ζ= + −  (43) 

where Fζ  either s
Fζ  or ns

Fζ in Eq. (36) to Eq. (43). Utilizing Eq. (8), Eq. (11), and Eq. (30) can give the work done by the 
frictional component of impact as 

2 21 1
2 2te D I I ti D F F teW v vµ σ µ σ= +   (44) 

It is valuable to identify the following quantities: 

( ) 1σ ,s
I D Ia cζ µ −= −  ( ) 1σ ,s

F D Fa cζ µ −= −  ( ) 11 2ns
F a b cζ

−−= −  (45) 

( ) 1σ ,s
I D Ic bµ −= −  ( ) 1σ ,s

F D Fc bµ −= −  0ns
F =  (46) 

[ ]1 1 ,Ts T
I D Iµ σ−= −L M J  [ ]1 1 ,Ts

F D Fµ σ−= −L TM J  1 11
Tns

F b c− − = − L TM J  (47) 

Hence, the algebraic solutions for the equations of motion for the five types of motion for the planar impact can be 
obtained. Newton’s coefficient gives: 

ne N niv e v= −   (48) 

Poisson’s coefficient gives: 

1 2 1
s s
I I

ne P P ni nhs
F F

v E E v vζ ζ
ζ ζ

    
= − + −         

 (49) 

Energetic coefficient gives: 
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2 2 2
1 2 1

s s
I I

ne E n E ni nhs
F F

v E E v vζ ζσ
ζ ζ
   

= − + −   
   

 (50) 

where nσ  is the sign of nv , which could be 1 or 1−  and given by: 

n
n

n

v
v

σ =  (51) 

The tangential velocity for the non-sliding, 

0tev =   (52) 

and for the sliding 

( ) ( )( ) te ti nh D I ne nh Fv v I c b I I c bµ σ γ= + − + − −  (53) 

For all types of motion 

( ) ( )s
ne I nh ni F ne nhI v v v vζ ζ= − + −  (54) 

( ) te D I nh F ne nhI I I Iµ σ γ= − − −  (55) 

( )Δ nh ne nhI I I= + −s
I Fq L L  (56) 

For the permanent sliding: ,    ,   s s
F I F D Iζ ζ γ µ σ= = = s

F IL L , for reverse sliding: 

,   ,  s
F F F D Fζ ζ γ µ σ= = = s

F FL L , and for non-sliding: 1,    ,  ns
F F F b cζ ζ γ −= = = ns

F FL L . For all types of motion 

1 2P P PE E e=  and 1 2E E EE E e= . If the tangential velocity halts in compression, then 1P PE e=  and 1E EE e= , and if the 

tangential velocity halts in restitution, then 2P PE e=  and 2E EE e= . 
The computational strategy developed in this section is shown in Fig. 1 shows. The strategy can be used to identify 

the type of impact and to evaluate the impact variables at the end of impact period. 

 
Figure 1: Computational strategy 
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6 NUMERICAL SIMULATIONS 

The free end B  of a rod shown in Fig. 2 strikes the ground while the angular velocity of rod OA  is zero and the 
horizontal and vertical components of the velocity of the center of mass are 0.6 m / s  and 1 m / s− , respectively. The 
uniform rod has a mass of 1 kg  and a length of 1 m , and the initial orientation of the rod is 45θ = ° . This problem has 
been examined before to show the paradox in mechanics when impact with friction is considered (Wang and Mason 
1992). The coefficient of restitution is assumed to be 0.82,  e = and the coefficients of static and dynamic friction are 

0.73,  0.7s Dµ µ= = . 

 
Figure 2: Impact between a rigid rod and a frictional ground floor 

We solve the problem using the traditional method used in textbooks like Whittaker (1904) and Kane and Levinson 
(1985). In the traditional method, there are two impact modes only, continuous sticking or continuous sliding. We assume 

a sticking, and the solution fulfills the conditions that te
s

ne

I
I

µ≤ . The change in the kinetic energy of the system 

 e iT T T∆ = − is calculated, where T  is given by 

T1
2

T = q q M  (57) 

It has been found that 0.010125 N.mT∆ = , and the positive T∆  means that the energy increases, which is not 
acceptable. 

To solve this energetically inconsistency, we went back to Routh’s method, and tested the three definitions for the 
coefficient of restitution. The initial generalized joint velocities, mass matrix, the Jacobian matrix, and the Jacobian inertia 
matrix are given by: 

[ ]i 0.6 m / s 1 m / s 0 rad / s ,T= −q  

1 0 0
0 1 0 ,
0 0 0.0833

 
 =  
  

M  (58) 

0 1 0.353553
,  

1 0 0.353533
− 

=  
 

J  
2.5 1.5
1.5 2.5

− 
=  − 

D  (59) 

the initial normal velocity, the initial tangential velocity, and the normal velocity nhv  if the tangential velocity vanishes 
during impact are: 

1  m / s,  inv = −  0.6 m / s,  itv =  0.344615 m / snhv = −  (60) 
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the critical coefficient of friction is: 0.6,cµ =  the normal impulse nhI  if the tangential velocity vanishes during impact, 

the normal impulse npI  if the tangential velocity does not vanish up to the end of compression phase, and the normal 

impulse nfI  if the tangential velocity does not vanish up to the end of impact are: 

0.184615 N.s,nhI =  0.28169 N.snpI =  and 0.422535 N.snfI =  (61) 

Hence 

 nh npI I<  and s cµ µ>  (62) 

Therefore, the type of impact is non-sliding in compression and the parameters s
Iζ , s

Fζ , s
IL , and s

FL  are 

0.28169,s
Iζ =  0.625s

Fζ =  (63) 

[ ]0.7 1 7.21249 T= − −s
IL  and [ ]0.6 1 1.69706 T= −sLF  (64) 

The solutions for the impact variables depend upon the final velocity, which is not the same for the three impact 
laws. Results for the three impact laws are shown in Table 1. 

Table 1 Impact variables for the three impact laws. 

Impact variables Units Newton’s Poisson’s Energetic 

 nev  m / s  0.82  0.5248  0.589  

 tev  m / s  0  0  0  

 neI  N.s  0.9125  0.728  0.7681  

 teI  N.s  0.3075  0.1968  0.2209  

eq  m / s
m / s
rad / s

 
 
 
  

 

0.9075
0.0875
2.5668

 
 − 
 − 

 

0.7968
0.272

2.2537

 
 − 
 − 

 

0.8209
0.2319
2.3218

 
 − 
 − 

 

neW  N.m  0.0489−  0.0752−  0.0528−  

T∆  N.m  0.0101  0.1139−  0.0916−  

The results show that the inconsistency in the energy increase encountered in the traditional method has not been 
solved using Newton’s coefficient of restitution with Routh’s method. However, both Poisson’s and energetic coefficients 
of restitution overcome this inconsistency. To go into details about the energy dissipation when using different 
coefficients of restitution, we consider  e 1= . Hence, the frictional impact component is the only energy dissipation 
source. The results using the three coefficients of restitution are given in Table 2. 

Table 2 Impact variables when e 1=  

Impact variables Units Newton’s Poisson’s Energetic 

eq  m / s
m / s
rad / s

 
 
 
  

 

0.975
0.025
2.758

 
 − 
 − 

 

0.84
0.2

2.376

 
 − 
 − 

 

0.869
0.151
2.458

 
 − 
 − 

 

teW  N.m  0.0388−  0.0388−  0.0388−  

T∆  N.m  0.1125  0.072−  0.0388−  
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Hence, Newton’s coefficient produces an energy increase due to impact, which violates physics laws. Poisson’s 
coefficient does not produce an energy increase; however, teT W∆ > , which means that energy dissipation is 

generated due to non-frictional force, which also violates the physics laws. Contrarily, the energetic coefficient obeys the 
physics laws, and the dissipation of energy is only due to the frictional component of impact. 

7 CONCLUSIONS 

A mathematical model and a simulation technique for planar multibody systems subjected to impact with friction have 
been presented. Formulation of the equations of motion has been developed. To correctly apply Coulomb friction law, 
Routh incremental method has been used. The equations of motion for both sticking and sliding have been developed with 
the normal impulse at collision point as the independent variable The plasticity of the collision in the normal direction has 
been introduced using the coefficient of restitution. The three definitions for the coefficient of restitution have been 
considered, namely the Newton’s, the Poisson’s, and the energetic coefficients. The sliding that starts could continue until 
the end of collision or sticking point could be reached. A critical value of the coefficient of friction has been determined that 
relies only on system configuration. If the coefficient of friction is at least equals to that critical value, the non-sliding mode 
will continue until the end of collision once it has been reached. Otherwise, the sliding will resume in the reverse direction. 
Hence, five types of impact-contact modes have been identified, and the conditions leading to each of them have being 
specified. These conditions depend upon multibody system inertia and orientation, initial velocity, and coefficient of 
restitution. Algebraic solutions have been obtained for all the types of impact. 

An illustration example has been considered to demonstrate the capabilities of the proposed formulation and analysis. 
The considered case has been solved with traditional method used in standard textbooks, and the results show an increase 
in the kinetic energy which contradicts the physics laws. Hence, the problem has been solved using the algebraic solutions 
obtained for Routh incremental method, and the solutions using the three definitions for the coefficient of restitution have 
been obtained, analyzed, and compared. A particular case with no dissipation of energy in the normal direction, i.e. 1e = , 
has been investigated. Only, the energetic coefficient has obeyed the physics laws. Newton’s coefficient could lead to energy 
increase, and Poisson’s coefficient could lead to energy dissipation in the normal direction even if 1e = . The results and 
analysis have brought to light the influence of different behaviors of the sliding of the contact point during impact period 
on impact variables and on the global motion of the system. The method presented can be used for operation support, 
performance analysis, as well as design and verification of planar multibody systems. The results obtained confirmed the 
applicability and efficiency of the formulation and the associated algebraic solutions. 
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