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Abstract 
The objective of this research is to present practical solutions for improving structural performance of thin-walled 
conic polygonal monopoles. The analysis encompasses computational simulations, analytical evaluation, and 
structural verification of reinforcements for openings and longitudinal folded stiffeners of flat walls. A benchmarked 
solution is derived from a design involving a 20-sided cold-formed steel polygonal section employed to support 
telecommunication antennas at a height of 40 meters. The structural verification is performed under the influence 
of wind loads, with particular attention to the commonly reported basic gust wind speed in Brazil. The conducted 
analysis encompasses: (i) wind-induced static equivalent dynamic behavior, (ii) parametric elastic buckling analysis, 
(iii) non-linear finite element analysis of reinforced openings, and (iv) direct strength method (DSM) performance 
evaluation of stiffened polygonal cross-sections. The importance of combining tailored numerical tools such as the 
finite strip and finite element methods, as well as wind-induced behavior, is demonstrated through the structural 
analysis results. In essence, the study's findings reveal the previously overlooked local-distortional buckling 
interaction in current design guidelines. Moreover, the research demonstrates that incorporating reinforcements 
and longitudinal stiffeners significantly enhances the flexural capacity of slender structures. Notably, the adoption 
of a single 4-fold (trapezoid) stiffener shape, per polygonal wall, emerges as a promising effective solution for 
enhancing the overall flexural capacity. Further full scale experimental structural tests and computational fluid 
dynamics should be considered for advanced structural analysis and improved design. 
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Telecom polygonal monopole, thin-walled steel member, longitudinal polygon wall stiffener, reinforcement 
of openings, shell finite element analysis 
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1 INTRODUCTION 

1.1 Background 

The installation of a new infrastructure, including support for antennas positioned as high as 40 to 50 meters in both 
urban and rural regions, is required for the expansion of the internet and cell phone signals. With regard to economic 
development, Dholakia and Harlam (1994) and Capello and Nijkamp (1996) found that investing in telecommunications 
infrastructure can be justified because of the positive impact on economic development and regional performance. The 
challenges associated with the use of telecommunication antenna supports are linked to social, economic, and 
environmental conditions. The environmental loads acting on the structure (e.g., wind, ice, and seismic), as well as the 
poor compliance with locational planning standards and the physiological impacts of telecommunication structures on 
residents are reported in the following papers (Amponsah et al. 2022; Cardoni et al. 2022; Odunola et al. 2015; Travanca 
et al. 2013), highlighting the challenges in using this structural system. 

The continual advancement of materials with higher strength and the evolution of more efficient structural systems 
in the field of telecommunication structures bring about changes in the mechanical behavior of such structures. This 
necessitates the development of innovative analysis and design approaches tailored for slender structures (Hawkins 
2010; Smith 2009; Solari and Pagnini 1999; Støttrup-Andersen 2009; Sabau et al. 2018; Travanca et al. 2019). In light of 
these developments, as emphasized by Travanca et al. (2019), there are demands for the adoption of advanced structural 
design methods, including computational modeling, to address the evolving challenges in this domain. 

Traditional telecommunication structural solutions are based on masts, self-supporting towers and trussed 
structural systems, with the latter having a much larger base area and impacting the costs of the ground occupancy. This 
factor is of utmost importance, which is why steel monopoles with thin-walled polygonal cross-section have been 
developed in an effort to find a lightweight and cost-effective solution. However, thin-walled steel polygonal conic towers 
encounter limitations related to instability phenomena, influenced by various factors, including:  

(i) the inclusion of openings for cable maintenance,  
(ii) changes in the number of sides and pole height directly contributing to local/distortional slenderness due 

to the conic structural system, 
(iii) rigidity issues in connections between modules,  
(iv) stress concentrations and fatigue effects at ground base connections and between modules, and  
(v) the flexural behavior induced by horizontal actions, such as seismic and wind loads. 

1.2 Research gaps in polygonal conic monopoles: a critical examination 

Godat et al. (2012) noted that there is a growing interest in the study of thin-walled steel tubular polygons. This 
heightened attention is attributed to their versatile applications in urban environments, serving not only for 
telecommunication purposes but also as structures for transmission lines and signs. Moreover, these structures present 
a low-cost maintenance and a better aesthetic aspect for urban environments than lattice towers. Therefore, several 
studies were carried out to investigate this type of structure (Aoki et al. 1991; Batista et al. 2022; Bräutigam et al. 2017; 
Bulson 1969; Chen et al. 2020; Godat et al. 2012; Gonçalves and Camotim 2013; Martins et al. 2021; Migita et al. 1992). 

Recently, Martins et al. (2021) conducted a comprehensive computational study on the elastic buckling and post-
buckling behaviour, with a particular focus on imperfection sensitivity, of regular convex polygonal cross-sections (RCPS) 
tubular members subjected to bending. The authors employed a geometrically non-linear analysis using the Generalized 
Beam Theory (GBT) methodology (Schardt 1994). This rigorous analysis aimed to gain insights into the local, distortional 
and local-distortional interaction buckling modes in the tubular thin-walled members. The study highlighted a significant 
correlation between the radius-over-thickness ratio and the ultimate flexural capacity of RCPS beams. According to their 
findings, establishing a reliable design rule for RCPS elements necessitates careful consideration of the radius-over-
thickness ratio, along with a thorough evaluation of the performance of the existing design procedure. However, it is 
crucial to note that, despite the authors conducting a thorough analysis, their focus was exclusively on the flexural 
behavior of regular convex polygonal sections. Consequently, there exists a noticeable gap in post-buckling studies for 
conic polygonal sections. 

Travanca and Andre (2018), Travanca et al. (2013) and Bräutigam et al. (2017) have pointed out that the existing 
standards are not adequately tailored for the specific analysis of monopoles. For instance, the structural design 
procedures for steel polygonal conic towers considered by TIA (2018) incorporate design equations for the flexural 
strength capacity of polygonal cross-sections from 8 up to 18 sides. However, for polygonal sections with a higher number 
of sides, the standard recommends adopting design equations for tubular circular member (CHS), as depicted in Eq. (1). 
These procedures account for plastic flexural strength (𝑀𝑝𝑙 = 𝑍𝑓𝑦, with 𝑍 as the plastic modulus of the section and fy as 



  

the steel yielding stress) for CHS, associating the buckling mode with the cylindrical shell structure, as described by 
Timoshenko and Gere (1963). Another limitation in the methodology pertains to the restricted maximum value allowed 
for the diameter-to-thickness ratio (D/t), specifically set at 300. Nonetheless, this approach appears to be a conservative 
approach for a 20-sided polygonal cross-section, for the cases where the polygonal cross-section along the height is 
classified as slender, as briefly discussed by Batista et al. (2022). 

𝑀𝑅𝑘,𝐶𝐻𝑆 =
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According to Batista et al. (2022), for polygonal cross-sections with more than 18 sides and considering High Mast 
Structures (HMS), 40 to 50-meter-high, the polygonal cross-section might be classified as a thin-walled steel tubular 
section (due to the necessity of higher diameters in the base of the mast). The design of such thin-walled structural 
systems commonly relies on Winter-type equations (Winter 1968). Notably, the Direct Strength Method (DSM), proposed 
by Schafer and Peköz (1998), are Winter-based equations, building upon the original concept introduced by Hancock et 
al. (1994). The cited methodology is well known for the design of cold-formed steel (CFS) members and is included in the 
following standards: Brazilian (ABNT 2010), North American (AISI 2016) and Australian/New Zealand (AS/NZS 2018). Eqs. 
(2) and (3) illustrates the DSM applied to assess the flexural capacity, specifically addressing the ultimate limit states 
(ULS) of local (𝑀𝑅𝑘,𝐷𝑆𝑀,𝐿) and distortional (𝑀𝑅𝑘,𝐷𝑆𝑀,𝐷) buckling.  

𝑀𝑅𝑘,𝐷𝑆𝑀,𝐿 = {
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In Eqs. (2) and (3) 𝑆 is the elastic flexural modulus of the section; 𝑓𝑦 is the steel yielding stress; 𝑆𝑓𝑦 is the elastic 

bending moment 𝑀𝑦 of the section; 𝜆𝐿 and 𝜆𝐷 are, respectively, the slenderness factors related to the local and 

distortional buckling; 𝑀𝑐𝑟𝐿 and 𝑀𝑐𝑟𝐷  are, respectively, the critical bending moments related to the local and distortional 
buckling1. 

Given the limitations of current design guidelines, even for standardized polygonal sections (i.e., from 8 to 18 sides), 
it remains challenging to enhance and provide a superior structural solution within the existing guidelines. When faced 
with specific cases to improve the strength capacity, such as the need for openings or an increase in height, viable 
methods include: (i) conducting advanced finite element analysis, (ii) exploring alternative analytical methodologies like 
the DSM, or (iii) performing experimental tests. Based on the cited approaches, three practical solutions emerge for 
improving the strength resistance: (i) increasing the number of sides in the polygon's cross-section, (ii) enhancement of 
steel material type and thickness, or (iii) reinforcing the cross-section. The latter proves valuable when openings are 
necessary, while the former may be beneficial for achieving greater pole height, particularly in cases where limitations 
exist regarding steel material enhancement. These avenues for improvement have not been thoroughly explored for 
HMS made of polygonal conical sections, creating a gap that warrants attention through advanced numerical analysis 
and experimental studies.  

 
1 These critical bending moments can be computed through a linear elastic buckling analysis utilizing a generalized 

eigenvalue formulation, as exemplified by the FStr software (Lazzari and Batista 2020). 



  

Recently, Batista et al. (2022) initially suggested assessing longitudinal folded stiffeners as a strategic approach to 
improve the overall flexural capacity of slender members2. For instance, the use of intermediate stiffeners in plane walls 
can be advantageous, especially when applied to specific situations such as a thin-walled stiffened trapezoidal CFS roofing 
system (Franco and Batista 2017; Lazzari et al. 2019). However, it should be more efficiently considered if the ULS is 
affected by local and/or distortional buckling and the cross-section is classified as slender (𝑀𝑅𝑘/𝑀𝑦  ≪  1.0).  

Motivated by (i) the advantages within the telecommunication industry, (ii) the necessity for a deeper 
understanding of factors influenced by instability phenomena, and (iii) recognizing limitations in existing design 
procedures, this investigation is centered on conducting computational analyses on an HMS polygonal conical pole for 
structural design and performance. The analysis aims to propose practical solutions for enhancing the structural 
performance of these slender structures, such as reinforcements, for openings and folded stiffeners for flat polygon walls 
(longitudinal stiffeners). The structural assessment specifically focuses on the effects of wind loads, considering the most 
commonly reported basic gust wind speed in Brazil. The numerical analyses include: (i) vibration mode analysis, (ii) 
vibration due to turbulent wind, (iii) parametric elastic buckling analysis, (iv) parametric non-linear finite element analysis 
considering openings with different edge reinforcements and (v) study of polygonal longitudinally stiffened cross-section 
based on elastic buckling analysis and DSM-based equations to predict the bending moment strength capacity. 

The benchmarked geometry under analysis is a 40 m high monopole, based on a proposed 30 meter in height 
prototype as shown in Figure 1, where a 5900 mm length bottom module of the prototype connected to the ground level 
foundation is shown. The geometry of the steel cold-formed cross-section is a 20-sided conical monopole (in the elastic 
buckling analysis, a variety of side numbers have been assessed) with diameters at the bottom and top respectively of 
1450 mm and 300 mm (diameter variation-over-height ratio of 28.75 mm/m). The following variables were considered 
in the present study: the CFS thickness, the geometry of the openings, the geometry of the edges reinforcement, as well 
as the type (cross-section) of the folded edge stiffeners. 

The present article is organized as follows. Section 2 focuses on wind-induced structural analysis. It includes the 
determination of equivalent static internal forces at the ultimate limit state and provides insights into the dynamic 
behavior of the structure under wind turbulence and vortex shedding. Section 3 constitutes the core of the paper, 
presenting a comprehensive structural analysis, which encompasses three main studies. Subsection 3.1: parametric 
elastic buckling analysis, which explores how the geometry of the polygonal cross-section impacts its behavior, and 
factors such as different diameters, thicknesses, number of sides and stress distribution types are examined. Subsection 
3.2: geometric and material nonlinear finite element analysis, which investigates the conicity effect and the influence of 
various reinforced opening configurations on the flexural capacity of the structure. Subsection 3.3: DSM-based strength 
predictions in stiffened polygonal cross-sections, exploring the potential for strengthening these sections by including 
folded stiffeners. Section 4 provides concluding remarks, summarizing the key findings and implications of the study. 

2 WIND-INDUCED STRUCTURAL BEHAVIOR 

2.1 Numerical model and vibration mode analysis 

The current analysis considers an isolated module panel thicknesses of 6.35 mm up to 18 m above the ground level 
and 4.75 mm for all others (additional information is included in Section 1). A 3D numerical stick model has been 
developed, taking into consideration all the masses (of the structure and attachments) and details affecting the structural 
stiffness, in order to find the global vibration modes and associated frequencies. Soil-foundation-structure interaction is 
considered by using Terzaghi springs (Terzaghi 1955) to represent soil action and determine the rotational stiffness of 
the shallow foundation on hard clay soils. At the base of the numerical model, the foundation is represented by an 
infinitely rigid frame member attached to a moment spring. A slip joint type connection between modules is introduced 
every 6 m between the mast steel modules. The overlap length is determined by applying a safety criterion to the design 
hoop tensile stress due to vertical load and overturning moment at each joint. Frame members with thicknesses of both 
upper and lower modules are inserted into the numerical model to represent the connection of each slip surface. The 
damping ratio of the structure is set to 1% (ABNT 1988) while the aerodynamic damping, being a minor favorable effect 
in this case, is neglected. Finally, groups of antennas are considered, according with real conditions described by the 
telecommunication company and described as follows, for two heights above ground: (i) level 35 m, 50cm from the pole 

 
2 While it is possible to manufacture the stiffened polygonal pole by cold-forming process, the connection solution using 

the slip joint alternative would need to be developed in order to make it feasible and practical for the erection procedures 
(Slocum and Fairbairn 2015). 



  

surface: 3×(1.95×0.4m), 3×(0.36×0.26m), 1× (ϕ0.6m); (ii) level 40 m, fixed to the guardrails of the upper platform: 12× 
(1.96×0.25m) and 12× (0.36×0.26m).  

 
Figure 1 Geometry of the reference 30 m high, 20-sided conic steel cold-formed pole for antennas support: (i) full scale prototype, 

(ii) bottom (base) at ground level, (iii) section X-X and (iv) section Y-Y (units: millimeters). 

The following frequencies were obtained from the vibration mode analysis of the 3D numerical stick model, 
respectively associated to the pairs of bending mode shapes in xz and yz planes illustrated in Figure 2: 0.52Hz , 1.86Hz 
and 4.55Hz .  The fundamental torsional mode frequency is equal to  5.00Hz. 

2.2 Vibration due to turbulent wind 

The dynamic analysis of the structure under turbulent wind action is conducted in the frequency domain using the 
discrete model method prescribed by the Brazilian standard (ABNT 1988) and reviewed by Santos (2018) and Santos et 
al. (2018), which is based on the classical Davenport (1967) method. The maximum generalized displacement associated 
to each vibration mode is calculated as the sum of the mean and the maximum fluctuating responses, with the latter 
being equal to the product of the standard deviation of the fluctuating displacement and the peak factor. The equivalent 
wind forces are then calculated and applied statically to the numerical model to reproduce the dynamic peak response. 

For the ultimate limit state condition, the basic wind speed is taken to be equal to 30m/s, 35m/s, 40m/s and 
45m/s at 10m above ground level in a flat and open terrain, averaged within 3𝑠 time interval. For these values, Reynolds 
number (𝑅e) varies in the range from 1.2 x 106 to 1.7 x 106 at the middle height of the upper third of the structure. Below 
that level, 𝑅e increases up to 3.7 x 106. According to James (1976) and Szalay (1989), who performed wind-tunnel tests 
on polygonal sections of up to 16 sides for Re below 1,0 x 106 , the drag coefficient of polygonal sections is influenced not 
only by 𝑅𝑒 and surface roughness but also by factors such as the corner radius and whether the wind direction points to 
a corner or not.  In a Computational Fluid Dynamics (CFD) study by Tang et al. (2013), a drag coefficient of approximately 
0.7 was determined for a 20-sided polygonal cross-section when the wind direction was towards a corner, with a 𝑅𝑒 of 
3.2 x 106. It is noteworthy that the study also concluded that a cylinder with the same 𝑅𝑒 achieved a drag coefficient of 

     

    
          

           
           

           

                      



  

0.42. Eurocode 1, Part 4-2005 (CEN 2005) provides the value of 0.70 for the drag coefficient of octadecagon sections with 
smooth surface and rounded corners subjected to low turbulence flow with 𝑅e in the range 2.1 × 105 to 1.2 × 106. 
Considering that for higher 𝑅𝑒, the drag coefficient tends to increase, and due to the numerous uncertainties associated 
with determining the drag coefficient, the authors have adopted a conservative value of 0.80. Regarding the antennas’ 
drag coefficients, the following values are adopted in accordance with Brazilian design practice (TELEBRÁS S/A. 1997): 
1.2 for rectangular and 1.6 for circular shapes. The antennas mounted at level 40 m (80% of total area) are not subjected 
to interference effects while these effects were neglected for the antennas at level 35 m by using the superposition 
method in estimating wind loading. 

 
Figure 2 Bending mode shapes in orthogonal vertical planes and associated frequencies: (a) 0.53Hz, (b) 1.86Hz and (c) 4.55Hz. 

The bending moment diagram of the pole due to the equivalent drag forces derived from the dynamic analysis 
considering the first bending mode, for each basic wind speed (𝑉0) is illustrated in Figure 3. The bending moment is given 
as a resultant value by combining the along-wind response with the transverse one due to lateral turbulence, estimated 
as one third of the along-wind fluctuating response (ABNT 1988), on the basis of the relation between turbulence 
intensities in lateral and longitudinal directions and in the lack of correlation between the wind velocity fluctuations in 
these two directions. It was found that the drag forces at the antennas are responsible for 65% of the total computed 
bending moment. Figure 3 gives the design bending moment 𝑀𝑆𝑑 due to the factored wind loads. The factored load 
combination for acting loads, as specified by the Brazilian code (ABNT 2024), is 1.25𝐷 +  1.4𝑊, where 𝐷 represents the 
dead load of the pole's self-weight and 𝑊 represents the wind load. The dead load is neglected due to its insignificant 
effect on the load combination (less than 2%). 

 
Figure 3 Equivalent static bending moment MSd due to factored wind loads with basic gust wind speed (𝑉0) of 30m/s, 35m/s, 

40m/s and 45m/s, considering a 20-sided polygonal conic pole, 40-meter-high, bottom diameter of 1450mm and top diameter of 
300mm and steel plate with 𝑡 = 6.35 mm and 𝑓𝑦 = 350 MPa. 

         

 

 

 

 

 

 

 

   

    

    

    

    

    

    

    

    

         

 
 
 
  
 
  

 

          

  
 
 
 
    

 
         

  
 
 
 
    

 
         

  
 
 
 
    

 
         

  
 
 
 
    

 
         



  

 
The serviceability analyses are conducted to ensure that the antennas do not experience improper behavior or 

excessive noise due to vibration that may exceed public comfort criteria. Using a 1-year return period (as frequently done 
for buildings), the peak displacement is estimated to be 0.6 m. 

The vortex-shedding critical wind velocities were estimated on the basis of Strouhal number equal to 0.18 as for a 
circular section according to Eurocode 1, Part 4-2005 (CEN 2005): 1.4 m/s, 7.8 m/s and 13.2 m/s respectively for the 
three bending vibration modes shown in Figure 2. In addition, for the first bending vibration mode, the flow is classified 
as subcritical, with a Reynolds number of 4.8x104, while for the third and fifty modes, the flow is supercritical, with a 

Reynolds number of 4x105 and 4.8x105, respectively. Applying Ruscheweigh method (CEN 2005) resulted in very low 
vibration displacement amplitudes, equal to 6.7, 6.9 and 2.5 mm respectively for the 1st, 3nd and 5rd modes, coming to 
the conclusion that the effects of vortex-shedding are not significant in the present case. 

3 STRUCTURAL ANALYSIS 

3.1 Parametric elastic buckling analysis with prismatic geometry 

The elastic buckling analysis is conducted using the 𝐹𝑆𝑡𝑟 software (Lazzari and Batista 2021). The cited software, 
developed at COPPE Federal University of Rio de Janeiro, is a user-friendly computational tool with finite strip method-
based formulation. The software conducts an elastic buckling analysis for prismatic structural elements with open and 
hollow cross-sections. It facilitates the identification of the signature curve, depicting the relationship between buckling 
stress and member length. Additionally, the software enables the visualization of critical buckling shapes through 2D and 
3D images, aided by an intuitive graphical user interface. It is well known that the main advantage of the finite strip 
method (FSM) formulation (compared to a classical finite element formulation) is to reduce the structure’s degrees of 
freedom, in order to acquire a better performance and time consumption (Cheung 1976; Hancock and Pham 2022; Lazzari 
2020; Li 2016; Li et al. 2014), however the method is limited to prismatic elements. A more comprehensive verification 
of the software, utilizing established methodologies, can be found in the works of Lazzari (Lazzari and Batista 2021; 
Lazzari 2020). 

In the current buckling sensitivity analysis, the parameters under investigation include: (i) the diameter (D) of the 
polygonal cross-section, measured along the midline of the wall between opposed vertices, varying from 300 to 1450 
mm (typical for a 40 m high polygonal monopole with a conicity of 28.75 mm/m), (ii) the thickness (t), and (iii) the number 
of polygonal sides. It is important to mention that the first step of the buckling analysis was performed with FSM-based 
solution for prismatic cross-section, and the results were compared with the FEM analysis, revealing accurate results. 
The effect of the conicity was obtained with the FEM model, as presented later (subsection 3.2.1). 

The FStr-based elastic buckling analysis was configured to accommodate the following conditions: (i) a regular 
prismatic polygonal tubular section (conicity not applied in this phase of the study), discretized with at least 2 internal 
nodal lines for each flat face of the polygon, (ii) CFS material characterized by a Young modulus (E) of 200 GPa, Poisson 
ratio (υ) of 0.3, and shear modulus (G) of 76.92 GPa, (iii) initial loading in the form of a linear forces distribution simulating 
a pure bending condition, (iv) simply supported end boundary condition, (v) one term of half-wave, (vi) varied pole 
lengths ranging from 10 to 106 mm, with 100 intermediate values in logarithmic scale, and (vii) a linear elastic numerical 
solution based on the FSM employing trigonometric longitudinal functions. 

Figure 4 depicts the signature curves (i.e., one term of half-wave) and critical buckling modes (both in 2D and 3D) 
for a 20-sided polygonal cross-section. The steel plate thickness (t) is maintained at 6.35 mm, resulting in a D/t ratio 
ranging from 47 to 228.  Additionally, the FStr elastic buckling analysis is compared with the results from the GBTul 
software (Bebiano et al. 2018) for D/t=228. GBTul employs a different methodology that evolves the Generalized Beam 
Theory (Schardt 1994), and the comparison in Figure 4 indicates a close agreement between the two solutions. 

To discern the buckling modes concerning the diameter-to-thickness ratio (D/t), a parametric elastic buckling 
analysis is executed. The analysis consists of varying the diameter-to-thickness ratio D/t, number of sides 𝑁𝑠 and initial 
loading stress distribution. The diameter varies with 41 increments and the thickness is chosen based on realistic 
manufacturing options (actual available steel plate thickness), from 2.65 mm to 6.35 mm. The number of sides are 
selected for the most usual options for this type of structure, from 16 to 24 sides and only considering even-sided 
polygons cross-sections. Lastly, the stress distribution is adopted for two different cases: (a) one with the maximum initial 
stress applied directly to the opposite vertexes of the polygonal cross-section and (b) the other case where opposite 
plane faces are under the maximum and constant stress distribution. This parametric analysis consists of a total of 246000 
generalized eigenvalue problems studied: 100 pole’s length, 41 diameters, 6 thickness, 5 number of sides and 2 stress 
distribution-types. Lastly, the categorization of the present buckling modes relied on visual inspection of the FStr results, 



  

as automatic identification of the buckling mode is not available. Illustrations of the elastic buckling modes derived from 
the FStr analysis are provided in Figure 4 and Figure 5, accompanied by definitions of local (L), distortional (D), and local-
distortional (LD) buckling interactions. 

 
Figure 4 Signature curves given by 𝐹𝑆𝑡𝑟 software of a 20-sided polygonal cross-section under pure bending and considering 

different 𝐷/𝑡 ratios, compared to the GBT solution, and 2D and 3D illustration of the critical buckling modes produced by 𝐹𝑆𝑡𝑟. 

Table 1 presents the FStr results, encompassing the diameter-to-thickness ratio D/t range, for each number of sides, 
stress distribution type, and elastic buckling mode. The elastic buckling modes include: (i) distortional, (ii) local-
distortional, and (iii) local. In Case (ii), the buckling mode incorporates both geometric shapes of local and distortional 
modes, signifying a distinct interaction between local (L) and distortional (D) buckling. 

In order to observe the ranges in Table 1 graphically, Figure 6 illustrates the range transition from (i) distortional to 
(ii) local-distortional and then to (iii) local buckling mode. The graphs illustrate that the buckling mode can be directly 
affected by the type of the initial loading applied to the polygonal pole, as well as by the number of sides, in function of 
the 𝐷/𝑡 ratio. The buckling mode is classified as local mode where there was no displacement at the vertices of each 
face. However, if there is such displacement, the buckling mode is classified as distortional mode. 

 
Figure 5 Elastic buckling modes associated to maximum stress distribution at (a) the vertex and at (b) the flat faces, classified as: (i) 
D, distortional (𝐷 = 415mm, 𝑡 = 4.75mm and 𝐷/𝑡 = 87), (ii) LD, local-distortional (𝐷 = 472mm, 𝑡 = 3.75mm and 𝐷/𝑡 = 126) 

and (iii) L, local buckling mode (𝐷 = 1220mm, 𝑡 = 3.00mm and 𝐷/𝑡 = 407). 

   

                     

    

                     

  



  

 
Figure 6 Illustration of the 𝐷/𝑡 ranges from Table 1 for (i) distortional, (ii) local-distortional and (iii) local buckling mode, considering 

the maximum initial loading applied: (a) to the flat polygonal face and (b) to the polygonal vertex of the cross-section. 

Table 1 FStr analysis results for buckling mode classification based on diameter-thickness ratio (𝐷/𝑡), considered number of sides 
(𝑁𝑠) of 16, 18, 20, 22 and 24, with maximum stress applied at a flat face and at the vertex. 

Stress Distr. 𝑵𝑺 (i) Distortional (D) (ii) Local-Distortional (LD) (iii) Local (L) 

Max. at plane face 

(Figure 5(b)) 

16 𝐷/𝑡 < 81 81 <  𝐷/𝑡 < 115 𝐷/𝑡 > 115 

18 𝐷/𝑡 < 98 98 <  𝐷/𝑡 < 120 𝐷/𝑡 > 120 

20 𝐷/𝑡 < 119 119 <  𝐷/𝑡 < 141 𝐷/𝑡 > 141 

22 𝐷/𝑡 < 146 146 <  𝐷/𝑡 < 164 𝐷/𝑡 > 164 

24 𝐷/𝑡 < 177 177 <  𝐷/𝑡 < 192 𝐷/𝑡 > 192 

Max. at vertex 

(Figure 5(a)) 

16 𝐷/𝑡 < 79 79 <  𝐷/𝑡 < 125 𝐷/𝑡 > 125 

18 𝐷/𝑡 < 99 99 <  𝐷/𝑡 < 149 𝐷/𝑡 > 149 

20 𝐷/𝑡 < 120 120 <  𝐷/𝑡 < 170 𝐷/𝑡 > 170 

22 𝐷/𝑡 < 147 147 <  𝐷/𝑡 < 195 𝐷/𝑡 > 195 

24 𝐷/𝑡 < 177 177 <  𝐷/𝑡 < 218 𝐷/𝑡 > 218 

 
The application of bending moment with maximum stress at the polygonal vertex and the plane polygonal face 

clearly results in different buckling modes, as illustrated in Figure 5 and Figure 6. Despite that, the critical buckling stress 
related to the critical bending moment 𝑀𝑐𝑟 of each loading case is almost identical, with a maximum difference of 0.6% 
for the cases where the buckling mode is classified as local-distortional. For the cases where the buckling mode is clearly 
local or distortional, the difference of the critical buckling stress (or 𝑀𝑐𝑟) is lower than 0.01%. 

3.2 Finite element analysis 

3.2.1 Description of the computational model 

The Finite Element Model (FEM) conducts a material and geometrical nonlinear analysis, utilizing the ANSYS 
software (ANSYS Inc 2013) through the parametric design language (APDL). Given the limited information on this specific 
type of modeling in the existing literature, particularly for a conic tubular section under pure bending, several 
assumptions were made based on the current understanding of computational modeling of CFS. Noteworthy conditions 
regarding the computational model (Figure 7) include: 

(i) 20-sided polygonal cross-section with diameter variation-over-height ratio (conicity) of 28.75 mm/m 
(Figure 7(i)). 

(ii) quadrilateral 30x30 mm shell finite element, SHELL181 (Figure 7(a), Figure 7(d), Figure 7(e) and Figure 
7(h)). 

(iii) bending moment applied as linear loading forces distribution along the polygonal cross-section shape, 
with the same maximum loading in the polygonal vertex at both end sections (Figure 7(c) and Figure 
7(f)). 

(iv) the boundary end condition enables fixed 10 ∙ 𝑡 thick end-plates (𝑡 as the pole thickness of the walls), 
with rotation released only in the direction of the applied bending moment, torsion prevented at both 

  

  

  

  

  

  

  

              

 
 
 
 
  
  
  
 
  
  

   

  
  

  

  

  

  

  

  

              
   

  

  

  

  

    

        

          

  

      



  

ends and fully restrained displacements in the plane of the end-plates, with axial displacement 
restrained at a single node located on the neutral plane at one of end-plates (Figure 7(g)). 

(v) nonlinear analysis by the modified Riks method (Crisfield 1981) with mixed displacement and load 
control. 

(vi) initial geometric imperfection considered as the first critical buckling mode taken from a previous elastic 
buckling analysis, amplified by 10% of the thickness 𝑡 (to pass through the bifurcation point the 
amplitude is selected to be large enough to exclude the trivial solution and small enough to avoid 
significant influence on the post-buckling mode shape, as proposed by Silvestre (2005)). 

(vii) the material model is based on elastic-perfectly plastic steel model without strain hardening, according 
to prEN 1993-1-14 (CEN 2022), with 𝐸 = 200 GPa of elastic modulus, Poisson ratio 𝜐 = 0.30 and 𝑓𝑦 =

350 MPa of yield stress. 
(viii) the model neglects the residual stresses of manufacturing and welding (Sabau et al. 2018; Chen et al. 

2020), as well as the modification of the mechanical properties of the steel due to cold work in the bent 
corners (Chen et al. 2020) and the round geometry of the corners (Ellobody and Young 2005; Matsubara 
and Batista 2023). 

 
Figure 7 Detail of the finite element model: (a) top fixed-ended end; (b) loading at the top end; (c) loading distribution along the top 

end; (d) shell element mesh in the openings at the top; (e) mesh at mid-span; (f) loading distribution along the bottom end; (g) 
loading at the bottom fixed-end; (h) mesh in the opening at the base; (i) 20-sided polygonal conic pole member. 

High antenna supports are mainly affected by lateral loads caused by wind-induced behavior, combined with 
negligible gravity load. In addition, the conical geometry of these structures combined with the lateral wind loading, 
leads to a problem with typical pure bending condition, with a minor influence of the shear stresses from shear and 
torsional effect. Building upon the earlier assumption, the applied load at the antenna support is conceptualized as a 
linear stress distribution at the cross-section ends. This distribution maintains a consistent maximum compressive stress 
at the extreme fibers of the end sections, resulting in a constant maximum stress diagram along the length of the pole. 

Based on the connection elements of the pole, i.e., slip joint and/or flange connection system, the pole is divided 
into standard modules of 6-meter-length members, which is conservatively analyzed in the present finite element model. 
Moreover, to facilitate a parametric analysis within a computationally demanding shell finite element model, the present 
investigation adopts a 6 meter length segment from the bottom end of the pole, with a diameter in the bottom and top 
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equal to 1450 mm and 1278 mm (this particular length is deemed representative for finite element analysis based on a 
prior simplified study (Batista et al. 2022)). 

3.2.2 Conicity effect in buckling analysis 

In order to verify the FEM with the FSM, the two methodologies are compared (with regards to an elastic buckling 
analysis). The FSM is limited in terms of describing the element in the longitudinal direction. In this case, only prismatic 
cross-section can be analyzed. For this case, 4 different models are compared, as illustrated in Figure 8: (i) FSM with 
prismatic geometry 𝐷 = 1364 mm; (ii) FEM with prismatic geometry 𝐷 = 1364 mm; (iii) FEM with conical geometry 
(𝐷𝑡 = 1278 mm,𝐷𝑏 = 1450 mm) and uniform bending moment (UBM); (iv) FEM with conical geometry (𝐷𝑡 =
1278 mm,𝐷𝑏 = 1450 mm) and uniform maximum stress diagram (UMS), as previously described in Figure 7 (all four 
models have thickness of 2.65 mm). 

 
Figure 8 Comparison of the elastic flexural buckling analysis results for a 20-sided polygonal pole with 6 m length, 2.65 mm 

thickness and considering: (i) uniform bending moment and prismatic geometry in 𝐹𝑆𝑡𝑟 software, (ii) uniform bending moment and 
prismatic geometry in ANSYS, (iii) uniform bending moment and conic geometry in ANSYS and (iv) uniform maximum stresses and 

conic geometry in ANSYS. 

As can be seen in Figure 8, the conicity effect and loading condition (uniform bending moment or uniform maximum 
stress) shows minor influence of the results of the critical bending moment. However, it changes the critical buckling 
mode, for the case where uniform maximum stresses (UMS) are applied in both ends. Finally, the structural analysis 
results presented confirm that the buckling analysis from FStr, considering a regular convex geometry (constant 
diameter), is sufficiently accurate to be deemed suitable for structural analysis and design. This conclusion holds true 
under the specified geometric conditions, incorporating the pole conicity of 28.75 mm/m. 

3.2.3 Nonlinear analysis with reinforced openings 

The presence of openings in poles is necessary for equipment and cables facilities to pass through, as well as for 
maintenance and inspection purposes. However, these openings lead to stress concentration, which weakens the pole's 
strength under both static and dynamic loading conditions, such as those caused by wind-induced vibration. This 
condition certainly reduces the pole's overall structural integrity and make it vulnerable to failure. 

To assess the impact of openings on a 40-meter height CFS monopole with a thickness of 6.35 mm, the finite 
element model is used to perform a nonlinear geometric and material analysis. This study only considers the effects of 
static loading and did not take fatigue into account. In addition, the openings’ edges reinforcements are considered in 
frame condition, which means they are perfectly welded to the steel pole and the welding residual stresses are not 



  

considered. The finite element model is described in detail in section 3.2.1 and the mesh around the reinforced openings 
can be seen in Figure 7(d), Figure 7(h) and Figure 9. Finally, the bending moment is conditioned to develop maximum 
stress distribution around the opening (worse case of the wind direction). 

 
Figure 9 Mesh discretization around the reinforced opening, indicating opening-types according to Figure 10 and reinforcement as 

described in Table A.1, in appendix (L: angle section with equal legs; RP: rectangular steel plate). 

 
Figure 10 Geometric models for the study of the effect of the openings of 20-sided steel cold-formed polygonal pole with a conicity 

of 28.75 mm/m, bottom and top diameters respectively of 1450 mm and 1278 mm and thickness of 6.35 mm (image out of 
scale). 

               

               

              

              

                                



  

The geometry of the openings considered in the present study are illustrated in Figure 10. The openings (a)-(b), (f)-
(g) and (h)-(i), have similar shapes, but they are placed in two different height positions, the same heights as illustrated 
in Figure 1(ii), for Opening (1) and Opening (2), i.e., openings (a), (g) and (i) are placed 400 mm above the ground level 
and openings (b), (f) and (h) placed 1000 mm above the ground. Openings (c), (d) and (e) have circular corners but 
opening (c) is fitted in the plane face of the polygonal cross-section and openings (d) and (e) have a constant width less 
than the width of the flat face. Opening (e), in particular, has a smaller opening area and is placed higher at 1200 mm. 

Table A.1, in appendix, provides the geometric details of reinforcements corresponding to each opening shape 
depicted in Figure 10. Additionally, it compares the Finite Element (FE) predicted flexural strength (without a safety factor 
design), denoted as 𝑀𝑅𝑘,𝐹𝐸, at the base of the 20-sided pole under different conditions: with and without openings, and 
with and without reinforcement. Poles with openings and no reinforcement are denoted as "NR," while those with 
reinforced openings are labeled according to the configurations described in the "Section type" of Table A.1. 

The results in Table A.1 (appendix) highlight that the presence of openings weakens the flexural strength of the 
structure (𝑀𝑅𝑘,𝐹𝐸/ 𝑀𝑅𝑘,𝐹𝐸,𝑁𝑂  <  1), as expected. Without reinforcement in the opening type (a), the strength is reduced 
by 45%. However, reinforcements can improve the structural strength reduction from 30% to 3%. The structural strength 
is mainly affected by the presence of second-order effects due to geometric imperfections around the openings, 
potentially leading to the plastic collapse around the openings. These deformations and the resulting stress field are 
depicted in Figure 11 for some of the cases listed in Table A.1. 

 
Figure 11 Failure modes of the 20-sided conic pole support with reinforced openings described in Table A.1 (appendix), illustrating 
the von Mises stress (failure criterion), with amplified deformed shape (* for this specific case, the rectangular plate is applied in 

both directions, inside and outside of the opening) 

One must note in Figure 11 that, for all the cases considered, there are 4 openings next to the top of the 6-meter-
long 20-sided pole, which is placed in accordance with the present reference model described in Figure 1. The openings 
next to the top of the module are reinforced with equal legs angle section L2 1/2×5/16” (63.5 mm width and 7.94 mm 
thickness). It is important to mention that those openings have negligible influence in the flexural capacity of the pole. 

                                         

                                              

              

                                                 

                                               
 
           

     
 



  

In Figure 12, Figure 13 and Figure 14, the data given in Table A.1 is illustrated. In the horizontal axis, the data is 
plotted under the ratio 𝐴𝑟/𝐴𝑝, which is the cross-sectional area of the reinforcing at the centerline of opening (𝐴𝑟) over 

the cross-sectional area of the removed element for the opening (𝐴𝑝). This ratio is related to the total cross-sectional 

area of the pole and represents the effectiveness of the reinforcement in the opening. 

 
Figure 12 Effect of the position of the opening from the bottom section (see Figure 10) in the bending capacity, considering 

rectangular plate reinforcement 63.5 mm x 7.94 mm (Blue: position of 400 mm; Red: position of 1000 mm). 

Figure 12 addresses the impact of the opening position from the bottom section of the pole in the flexural capacity 
of the conical pole. The graph shows only the results of openings with NR and with RP 63.5 mm × 7.94 mm (2 1/2×5/16”) 
reinforcements (a), (b), (f), (g), (h) and (i), given in Figure 10 and Table A.1. The openings 400 mm next to the base (blue 
points) show higher parametric bending moment capacity 𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 (except for the NR case, where the difference 

between the height position of the opening is not relevant, being less than 2%). In addition, the openings (h) and (i) seem 
to be less efficient, because they combine higher values of 𝐴𝑟/𝐴𝑝 with negligible improvement of resistance related to 

the height position of the openings (∆𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 = 0.03). This condition may be highlighted if compared with the results 

of the openings (a)-(b) and (f)-(g) (∆𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 = 0.10). 

 
Figure 13 Effect of the cross-section reinforcement in the flexural capacity of the opening (b). 

Regarding the influence of the reinforcement cross-section type in the bending moment capacity of the conical pole, 
Figure 13 addresses the following case: only the opening (b) is considered (Figure 10) with 9 cases analyzed, where the 
reinforcement cross-section are NR, RP or L-section shape. It is clear to notice that, with more robust reinforcement the 
opening becomes stiffer, arising both conditions: (i) improving the flexural resistance and (ii) achieving more important 
stress concentration around the reinforcement. On the other hand, it is important to mention that some of the options 
adopted as reinforcement in the present analysis might not be practicable in a real manufacturing condition. In this 

   

   

   

   

   

   

   

                      

 
 
  
 
 
  
  

 

      

     

     

   

   

   

   

   

   

      

      

      

                       
          
          

   

   

   

   

   

   

              

 
 
  
 
 
  
  

 

      

  

              

             

             

             

               

             

               

               

   



  

context, welding procedure must be carefully observed for the case of combining the 6.35 mm thickness of the pole with 
19.05 mm and 22.22 mm thickness for the angle sections. 

Figure 14 shows the results of all the cases described in Table A.1 in two different perspectives. Figure 14(a) 
compares the analyzed cases with the equivalent static bending moment at the base of the pole due to wind-induced 
dynamic behavior (𝑀𝑆𝑑), given by the structural dynamic analysis, compared to the design predicted finite element 
flexural strength with a safety factor (𝑀𝑅𝑑,𝐹𝐸 = 𝑀𝑅𝑘,𝐹𝐸/1.1). The equivalent static design bending moment 𝑀𝑆𝑑 is given 

for the most common basic gust wind speed in Brazil (Loredo-Souza et al. 2022): 30 m/s, 35 m/s, 40 m/s and 45 m/s. 
As can it be seen, for basic wind speed of the 30 m/s and 35 m/s, all the reinforced openings are in the safe region 
(𝑀𝑅𝑑,𝐹𝐸/𝑀𝑆𝑑 > 1.0). On the other hand, for basic wind speed of 45 m/s, none of the proposed cases are safe. Regarding 

the basic wind speed of 40 m/s, only the reinforced openings, (b)-L152.4×22.22 mm and (i)-2×RP×70×9.53 mm, are in 
the safe margin. In addition, with respect to the opening with no reinforcement (𝐴𝑟/𝐴𝑝 = 0), it is only safe for the case 

of basic wind speed of 30 m/s. 
Figure 14(b) displays the results of the parametric flexural capacity 𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 of each opening illustrated in Figure 

10. The results identify each opening performance, with respect to its effectiveness in the flexural capacity. As reported 
in Figure 13, higher cross-section area of the reinforcement promotes the improvement of the flexural capacity. 
However, in Figure 14 (b) it is clear to notice that the reinforced opening (i) with double rectangular plates (see detail of 
opening (i) in Figure 9) has provided the best efficiency, by combining higher bending strength 𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 with lower 

𝐴𝑟/𝐴𝑝 ratio. Also, the option (i)-2×RP×70×9.53 mm has shown safe results even for basic wind speed of 40 m/s. One 

must note that the cited reinforcement option has increased the flexural strength very close to the yielding bending 
moment (𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 = 0.99), corresponding to a design ideal condition. 

 
Figure 14 Results of openings with reinforcement described in Table A.1: (a) ratio between the predicted finite element design 

flexural strength 𝑀𝑅𝑑,𝐹𝐸  and the design bending moment 𝑀𝑆𝑑  due to factored wind loads given in Figure 3; (b) parametric flexural 
capacity 𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦 of each opening type illustrated in Figure 10. 

3.3 Evaluation of stiffened polygonal thin-walled section 

For the present study, several types of folded stiffeners of the polygonal section are analyzed. The objective of the 
study is to understand the possibility of increasing the strength of a 20-sided polygonal pole, with a prismatic geometry 
with diameter of 1450 mm (bottom diameter). For this study, the usual commercialized steel coil thickness (𝑡) is 
considered: 2.65 mm, 3.00 mm, 3.75 mm, 4.25 mm, 4.75 mm and 6.35 mm. Concerning the stiffeners’ geometry, 9 
types were considered, A to H plus G2 in Figure 16, most of them with a depth of 2 ∙ 𝑡, except for stiffener B with a depth 
of 4 ∙ 𝑡 (see Figure 16 for general description and Table A.2, in appendix, for more geometry details). The geometry is 
based on two types of stiffeners: (i) 4-fold (trapezoid) stiffener and (ii) 3-fold (triangle) stiffener. Stiffeners can be 
strategically applied either along the flat walls or at the vertices of the polygonal cross-section. Also, it was considered 
that the alternate distribution of the stiffeners shown in Figure 15(iii) is unable to deal with the local buckling, since the 
cross-section remains with slender unstiffened faces. Anyway, the vertex stiffener F was taken in alternate condition, as 
described in Figure 16 and Table A.2 (10 bent corners of the total of 20 received the vertex stiffener). The description of 
the geometry parameters of the stiffeners are illustrated in Figure 15(i) for an intermediate 4-fold stiffener and Figure 

   

   

   

   

   

   

              

 
 
 
  

 
  
  

 
 

      

   

  

  

  

  

     

      
     

                   

   

   

   

   

   

   

              

 
 
  
 
 
  
  

 

      

   

   

   

   

   

   

   

   

   

   



  

15(ii) for a vertex 3-fold stiffener. Figure 15(iii) and Figure 15(iv) illustrate examples of intermediate stiffeners in the plane 
walls of a polygonal cross-section, given by a manufacturer prototype and modeled by the 𝐹𝑆𝑡𝑟 software, respectively. 

 
Figure 15 Folded stiffeners of cold-formed polygonal cross-sections: (i) single 4-fold (trapezoid) intermediate stiffener dimensions; 
(ii) single 3-fold (triangle) vertex stiffener dimensions; (iii) example of an alternate trapezoid stiffener in a 20-sided polygonal cross-
section prototype; (iv) example of a 20-sided polygonal cross-section with a wide trapezoid stiffener (type H in Figure 16) modeled 

for buckling analysis by 𝐹𝑆𝑡𝑟 software. 

The geometric dimensions of the stiffeners presented in Figure 16 (based on the parameters defined in Figure 15(i) 
and Figure 15(ii)) are shown in Table A.2. The approach of the present study is to understand the influence of the 
stiffeners in the predicted bending moment strength, by using an alternative analytical approach. To achieve this, 
𝑀𝑅𝑘,𝐷𝑆𝑀,𝐿 and 𝑀𝑅𝑘,𝐷𝑆𝑀,𝐷 are defined by Eq. (2) and Eq. (3), respectively for local and distortional buckling, as an 
estimative to predict the flexural capacity (where 𝑀𝑐𝑟𝐿 and 𝑀𝑐𝑟𝐷were computed with the 𝐹𝑆𝑡𝑟 software).  

The equations mentioned were previously verified by the authors for the unstiffened 20-sided conic polygonal thin-
walled section (Batista et al. 2022). The authors demonstrated that Eqs. (2) and (3) provided negligible differences with 
the results obtained from the FE buckling analysis. On the contrary, Eq. (1), recommended by TIA (2018) for tubular 
circular members and polygonal cross-sections higher than 18, was shown to be inaccurate for predicting the ultimate 
flexural capacity of 20-sided thin-walled polygonal sections. 

The evaluation of the bending moment strength of the stiffened polygonal cross-sections was accomplished with 
the initial parameters used for the finite strip analysis with the 𝐹𝑆𝑡𝑟 software, following the previous analyses described 
in section 3.1. In addition, the initial loading applied in the stiffened models is defined with a bending moment with 
maximum stress at the polygonal vertex (except for the stiffener G2, where the maximum stresses were applied at the 
plane faces of the polygonal with the stiffener). The previous buckling analyses confirmed that the critical buckling 
stresses are almost identical (maximum difference of 0.6%), for the two cases considered of initial loading distribution 
along the polygonal cross-section. 

Since stiffened sections may improve the strength capacity of the thin-walled 20-sided polygonal cross-section 
affected by local buckling, it is inevitable that the distortional buckling replaces the local buckling as the cross-section 
critical buckling mode, leading to a distortional buckling mode failure. In addition, one may observe that local-distortional 
buckling interactions may develop, for the cases where local and distortional critical bending moments 𝑀𝑐𝑟𝐿 and 𝑀𝑐𝑟𝐷 
are relatively close. The local-distortional buckling mode interaction of CFS members is still an open subject of 
investigation, although recent studies presented satisfactory results for the case of open CFS members (Matsubara et al. 
2019; Matsubara and Batista 2023). In the present study only the design procedure of Eq. (2) and Eq. (3) are considered, 
following the current design methods included in recognized codes and standards (AISI 2016; ABNT 2010; AS/NZS 2018). 

 

       

      

       

         

 

 

  
 



  

 
Figure 16 Types of wall folded stiffeners configuration adopted in the present study (dimensions displayed in Table A.2). 

Table A.2 and Figure 17 show the results of the nine cases of stiffeners A to H and G2 (Figure 16), considering the 
cited thickness 2.65 to 6.35 mm. Figure 17(a) displays the ratio 𝑀𝑅𝑘,𝐷𝑆𝑀/𝑀𝑦 of the DSM predicted flexural strength 

𝑀𝑅𝑘,𝐷𝑆𝑀 obtained with the minimum between Eq. (2) and Eq. (3), min(𝑀𝑅𝑘,𝐷𝑆𝑀,𝐿 , 𝑀𝑅𝑘,𝐷𝑆𝑀,𝐷), over the elastic yielding 
bending moment 𝑀𝑦. One may observe that the non-stiffened (NS) 20-sided polygonal cross-section has mostly the lower 

strength ratio. Indeed, by applying stiffeners it is possible to increase the strength capacity ratio in almost all the cases, 
with exception of the stiffener type A, for which negligible strength improvement is found. However, for the stiffeners B, 
G, G2 and H (G and G2 are almost coincident in the graph) the improvement of the flexural capacity can be noticed. The 
same conclusion may be obtained from Figure 17(b). These most efficient stiffening types are based on trapezoid 
intermediate stiffeners with effective depth of 2 ∙ 𝑡 (G, G2 and H) or 4𝑡 (B), confirming the conclusions for stiffened 
trapezoidal CFS self-supporting roof systems (Franco and Batista 2017). Finally, stiffener types C, D and E show acceptable 
strength improvement and the vertex type F confirmed its inappropriate structural performance since it does not offer 
efficacy for the local buckling. 

Regarding the critical buckling mode, all the results of the 1450 mm diameter stiffened 20-sided polygonal members 
included in Table A.2 and Figure 17 developed distortional buckling. These results contrast with those of the unstiffened 
condition (NS), for which local buckling is the critical buckling mode, thus proving the efficacy of all the adopted stiffening 
types. 

Finally, it must be observed that the bending strength 𝑀𝑅𝑘,𝐷𝑆𝑀 was computed with Eq. (2) and Eq. (3), which is a 
DSM-based calibrated solution for open CFS sections (i.e., lipped channel, hat, zed, rack sections). Even though the DSM-
based procedure has been checked in a previous study (Batista et al. 2022), it is premature to say that Eq. (3) could be 
used for conical polygonal hollow sections with stiffeners. In the previous paper (Batista et al. 2022), the effectiveness 
of the DSM-based equations was studied for conical polygonal hollow sections with plane walls, i.e., without stiffeners 
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and it was concluded that the Eq. (2) (local buckling effect) could be used as a design procedure. In this matter, Eq. (3) 
could not be fully acceptable since it was not calibrated for the case of conical polygonal cross-sections with intermediate 
stiffeners. The inclusion of such folded stiffeners introduces complexities, and the Eq. (3) may not adequately account 
for the diverse distortional buckling effects, especially when multiple distortional modes could arise. This aspect should 
be checked in future investigations, including FEM and experimental tests involving stiffened CFS conical polygonal 
members under uniform bending loading. 

 
Figure 17 DSM flexural capacity prediction with intermediate and vertex stiffeners, compared to the non-stiffened (NS) 20-sided 

polygonal cross-section, with prismatic geometry D=1450 mm and thickness from 2.65 mm to 6.35 mm: (a) 𝑀𝑅𝑘,𝐷𝑆𝑀/𝑀𝑦, (b) 

increase of the flexural capacity in comparison with the NS cross-section. 

4 CONCLUDING REMARKS 

The outcomes of the current investigation suggest that an enhanced solution for a 20-sided conic CFS polygonal 
pole is structurally feasible for supporting telecom antennas up to 40 meters above the ground. The study incorporated 
considerations of wind-induced behavior, structural stability analysis, the assessment of reinforced openings, and 
improved stiffened thin-walled polygonal cross-sections. The study provided structural improvements and delved into 
the phenomena of buckling. Key conclusions drawn from the present research can be summarized as follows: 

(i) Through the dynamic structural analysis, fundamental information has been obtained about the internal 
forces caused by the dynamic behavior and wind turbulence. In addition to the identification of the bending 
modes as the most common natural vibration modes of the studied pole, the vibrations caused by turbulent 
wind were adopted to compute the distribution of the equivalent static bending moment along the pole’s 
length, which can be used for engineering design purposes, taking into account the typical wind speeds in 
Brazil. Furthermore, it was concluded that the vortex-shedding vibration phenomenon has a minimal impact 
on these types of pole structures (at least for the geometric properties considered in the present 
investigation). 

(ii) The elastic buckling analysis conducted using the 𝐹𝑆𝑡𝑟 software has successfully identified critical buckling 
modes, including local (L), distortional (D), and local-distortional (LD) buckling interactions. Notably, this 
identification has revealed a significant relationship between these modes and both the number of sides 
and the 𝐷/𝑡 (diameter-to-thickness) ratio. Consequently, for a reliable design procedure, it becomes 
imperative to consider both parameters to accurately predict the strength of polygonal monopoles. 

(iii) Indeed, the elastic critical buckling analysis holds a fundamental role in the design of such slender structures. 
It is essential to highlight that, following the principles of the DSM (as expressed in Eq. (2) and Eq. (3)), it 
facilitates the examination of local and distortional buckling interactions as distinct and uncoupled 
phenomena. However, for the case of clear local-distortional buckling mode (the buckling mode must be 
classified by observing the shape of the deformation displayed by the computational program 𝐹𝑆𝑡𝑟, actually 
the solution of a generalized eigenvalue problem) it would be expected to apply a structural strength 
solution other than Eq. (2) and Eq. (3) (each one devoted to single local or distortional buckling modes, 

    

  

   

   

   

   

   

   

                          
  
  
  
  
  
  
  
  
  

 
  
  
  
 
  
  
 
  
 
 

     

          

         

   

   

   

   

   

   

   

                           

 
 
  
 
 
 
  
  

 

     

   
   
    
     

      



  

respectively). Anyway, as this solution is only available at the research step by now, the authors decided to 
keep the design prescriptions consolidated in internationally recognized codes and standards. 

(iv) The FEM employed in this study facilitated an in-depth examination of the effects of conicity and openings, 
particularly in the bottom region of the conic pole. Verification of the FEM was conducted using the FSM 
and comparison with prismatic and conic geometries. Minimal differences were observed across all models, 
especially for the 6-meter-long benchmark structural model. The FEM has confirmed the adequacy of the 
FSM when employing prismatic geometry. This verification indicates that FSM, with a prismatic approach, is 
sufficiently accurate for conducting precise structural analyses and designing geometries with a conicity of 
28.75 mm/m. Moreover, various configurations, including geometric variations of openings combined with 
steel angles and rectangular plate elements welded around the edges, were tested. The results, focusing on 
the bending moment capacity of the pole member in relation to elastic-plastic failure configurations, allowed 
the identification of optimal solutions crucial for structural design considerations.  

(v) The parametric study concerning the effect of the reinforcement of the opening has demonstrated that the 
inclusion of openings without reinforcement leads to a significant reduction in the flexural capacity 
(𝑀𝑅𝑘,𝐹𝐸/𝑀𝑦), amounting to nearly 50%. However, with the adoption of reinforcements, the flexural capacity 

can be enhanced, reaching levels ranging from 70% to as high as 97% of the elastic bending moment (𝑀𝑦).  

(vi) In the context of verifying the design bending moment resulting from factored wind loads based on typical 
wind speeds in Brazil, the study has yielded significant insights. It has been established that for wind speeds 
of 30 m/s, 35 m/s, and 40 m/s, it is feasible to design with adequate safety margins using some of the 
suggested reinforcements. However, when faced with a basic wind speed of 45 m/s, none of the proposed 
reinforcement solutions proved sufficient to strengthen the 40-meter-high polygonal conical pole to meet 
the required safety standards. 

(vii) Stiffened polygonal cross-sections were evaluated, using finite strip method software to obtain: (i) the 
critical buckling bending moment and (ii) the bending moment strength predicted by the DSM-based 
equations Eq. (2) and Eq. (3). Typically, the local mode was only critical for the case of the unstiffened 
polygonal section (NS), while the distortional mode was predominant for the others. The consideration of 
different configurations of stiffened sections, including trapezoid (4 folds) and triangular (3 folds) 
intermediate stiffeners as described in Figure 16 and Table A.2, changed the buckling mode from local to 
distortional. Moreover, the results of the buckling analysis indicated the trapezoid stiffeners offer better 
results if compared with the triangular shape. In addition, it was shown that only intermediate stiffeners 
demonstrated effectiveness for the local buckling and that the vertex option may be disregarded. 

While fatigue was not explicitly addressed in this study, the authors acknowledge its significance in structural design. 
This includes considerations for welded details around the openings, the connection between the pole and the end plate 
connected to the concrete foundation block, as well as the flange bolted connections between pole members during 
erection. 

Wind tunnel tests would bring additional information of the wind forces over the structure, allowing refinement of 
the structural design fundaments and comparison with the adopted drag coefficient of the particular geometry of the 
poles. In addition, the actual structural performance of the polygonal steel member could be obtained with the help of 
full-scale experimental tests, taking into consideration a setup of a representative length of the pole under bending 
(according with the experimental facilities of the laboratory) and allowing refining the definition of the collapse 
configuration and its correspondence with the structural strength equations considered in the present investigation. The 
authors expect a possible extension of the present investigation in both directions (wind tunnel and structural tests) in 
the near future. 

The results of this study provide theoretical engineering basis for improving the structural design of polygonal 
conical monopoles used to support telecom antennas. The presented results and findings are intended as a contribution 
to guidelines for the development of more effective design of such structures. 
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APPENDIX 

Table A.1 Description of the bottom openings with reinforcements and its flexural capacity, from the FEM model results: 
𝑏 x ℎ x 𝑡 angle; 𝑏 x 𝑡 rectangular plate; 𝐴𝑟  cross-section area of the reinforcement member; 𝐴𝑝 cross-sectional area of the removed 

element for the opening; 𝑀𝑅𝑘,𝐹𝐸  the finite element bending moment strength; 𝑀𝑦  the elastic bending moment. 

Opening Reinforcement Pos. from 
ground level 

Ap Ar/Ap MRk,FE MRk,FE/My 
MRk,FE / 
MRk,FE,NO Type Section b h t Ar 

 Figure 10 Type** mm mm mm mm2 mm mm2    kNm     

NO - - - - - - 0 0.00 3642 1.02 1.00 

(a) NR 0.0 0.0 0.00 0 400 1422 0.00 2000 0.56 0.55 

(a) RP 63.4 0.0 7.94 1007 400 1422 0.71 2904 0.81 0.80 

(a) L 63.4 63.4 7.94 2014 400 1422 1.42 2822 0.79 0.77 

(b) NR 0.0 0.0 0.00 0 1000 1405 0.00 2038 0.57 0.56 

(b) RP 63.4 0.0 7.94 1007 1000 1405 0.72 2540 0.71 0.70 

(b) L 63.4 63.4 7.94 2014 1000 1405 1.43 2670 0.75 0.73 

(b) L 63.4 63.4 12.70 3221 1000 1405 2.29 2975 0.83 0.82 

(b) L 76.2 76.2 12.70 3871 1000 1405 2.75 2985 0.83 0.82 

(b) L 101.6 101.6 14.29 5807 1000 1405 4.13 3119 0.87 0.86 

(b) L 127.0 127.0 19.05 9677 1000 1405 6.89 3208 0.90 0.88 

(b) L 152.4 152.4 15.88 9680 1000 1405 6.89 3133 0.88 0.86 

(b) L 152.4 152.4 22.22 13545 1000 1405 9.64 3330 0.93 0.91 

(c) RP 63.4 0.0 7.94 1007 1000 1405 0.72 2659 0.74 0.73 

(c) RP 126.8 0.0 7.94 2014 1000 1405 1.43 2702 0.75 0.74 

(d) RP 63.5 0.0 7.94 1008 1000 1080 0.93 2743 0.77 0.75 

(d) RP 72.6 0.0 12.70 1844 1000 1080 1.71 2882 0.81 0.79 

(d) RP 101.6 0.0 14.29 2904 1000 1080 2.69 3003 0.84 0.82 

(d) RP 80.0 0.0 10.00 1600 1000 1080 1.48 2827 0.79 0.78 

(e) RP 70.0 0.0 8.00 1120 1200 1016 1.10 2786 0.78 0.77 

(e) RP 80.0 0.0 10.00 1600 1200 1016 1.57 2860 0.80 0.79 

(e) RP 70.0 0.0 9.53 1334 1200 1016 1.31 2834 0.79 0.78 

(e) RP 140.0 0.0 9.53 2668 1200 1016 2.63 2905 0.81 0.80 

(f) RP 63.5 0.0 7.94 1008 1000 1405 0.72 2611 0.73 0.72 

(f) RP 80.0 0.0 10.00 1600 1000 1405 1.14 2612 0.73 0.72 

(f) *RP 80.0 80.0 10.00 3200 1000 1405 2.28 2784 0.78 0.76 

(g) RP 63.4 0.0 7.94 1007 400 1422 0.71 2966 0.83 0.81 

(h) RP 63.5 0.0 7.94 1008 1000 1113 0.91 2782 0.78 0.76 

(h) RP 80.0 0.0 10.00 1600 1000 1113 1.44 2888 0.81 0.79 

(h) 2xRP 63.5 63.5 7.94 2017 1000 1113 1.81 3020 0.84 0.83 

(h) 2xRP 70.0 70.0 9.53 2668 1000 1113 2.40 3093 0.86 0.85 

(i) RP 63.4 0.0 7.94 1007 400 1130 0.89 2904 0.81 0.80 

(i) RP 63.4 0.0 7.94 1007 400 1130 0.89 3124 0.87 0.86 

(i) 2xRP 70.0 70.0 9.53 2668 400 1130 2.36 3546 0.99 0.97 

**NO: Structure without any opening; NR: No reinforcement applied to the opening; L: Angle section with equal legs b x h x t; RP: Rectangular steel 
plate b x t; 2xRP: Two sets of rectangular steel plates applied in different regions b x h x t (see Figure 9). 

* For this specific case, the rectangular plate is applied in both directions, inside and outside of the opening. 

 
  



  

Table A.2 Stiffening properties (see Figure 16) and results of 20-sided polygonal cross-section with prismatic geometry 
D=1450 mm: plate thickness 𝑡, geometric dimensions, cross-section area 𝐴, critical bending moment 𝑀𝑐𝑟  and bending moment 

strength ratio 𝑀𝑅𝑘,𝐷𝑆𝑀 /𝑀𝑦. 

Stiffener 
t 

Numb. of 
Stiffeners 

w1 or h w2 𝝋 or β 𝑨 Mcr 
MRk,DSM /My 

(mm) # (mm) (mm) (o) (mm2) (kN.m) 

NS 2.65 0 - - - 12022 469 0.57 

 

3.00 0 - - - 13610 679 0.62 

3.75 0 - - - 17012 1322 0.73 

4.25 0 - - - 19281 1920 0.79 

4.75 0 - - - 21549 2672 0.85 

6.35 0 - - - 28807 6306 1.00 

A 2.65 2 6.12 0.00 60 12671 630 0.54 

 

3.00 2 6.93 0.00 60 14441 933 0.61 

3.75 2 8.66 0.00 60 18311 1876 0.73 

4.25 2 9.81 0.00 60 20949 2770 0.80 

4.75 2 10.97 0.00 60 23633 3912 0.86 

6.35 2 14.66 0.00 60 32532 9205 1.00 

B 2.65 1 12.24 71.53 60 12671 1909 0.84 

 

3.00 1 13.86 70.99 60 14441 2501 0.88 

3.75 1 17.32 69.84 60 18311 4010 0.94 

4.25 1 19.63 69.07 60 20949 5201 0.98 

4.75 1 21.94 68.30 60 23633 6510 1.00 

6.35 1 29.33 65.83 60 32532 11630 1.00 

C 2.65 1 56.83 0.00 5.35 12048 1163 0.71 

 

3.00 1 56.87 0.00 6.06 13648 1658 0.77 

3.75 1 56.96 0.00 7.57 17087 3061 0.88 

4.25 1 57.03 0.00 8.57 19389 4260 0.94 

4.75 1 57.11 0.00 9.58 21700 5617 0.99 

6.35 1 57.42 0.00 12.78 29169 11080 1.00 

D 2.65 2 6.12 42.92 60 12671 1177 0.70 

 

3.00 2 6.93 42.59 60 14441 1669 0.76 

3.75 2 8.66 41.90 60 18311 3059 0.87 

4.25 2 9.81 41.44 60 20949 4183 0.92 

4.75 2 10.97 40.98 60 23633 5409 0.95 

6.35 2 14.66 39.50 60 32532 10330 1.00 

E 2.65 2 6.12 42.92 -60 12671 1275 0.72 

 

3.00 2 6.93 42.59 -60 14441 1830 0.78 

3.75 2 8.66 41.90 -60 18311 3456 0.90 

4.25 2 9.81 41.44 -60 20949 4860 0.95 

4.75 2 10.97 40.98 -60 23633 6458 1.00 

6.35 2 14.66 39.50 -60 32532 11580 1.00 

F* 2.65 1 41.82 - 75 12978 753 0.58 

 

3.00 1 41.82 - 75 14692 1090 0.64 

3.75 1 41.82 - 75 18365 2121 0.76 

4.25 1 41.82 - 75 20813 3078 0.83 

4.75 1 41.82 - 75 23262 4283 0.89 

6.35 1 41.82 - 75 31097 7817 0.98 

G 2.65 1 6.12 73.57 60 12346 1455 0.77 

 
3.00 1 6.93 73.30 60 14025 2017 0.82 

3.75 1 8.66 72.72 60 17662 3512 0.91 

4.25 1 9.81 72.34 60 20115 4711 0.96 



  

4.75 1 10.97 71.95 60 22591 6071 1.00 

6.35 1 14.66 70.72 60 30670 11370 1.00 

G2 2.65 1 6.12 73.57 60 12346 1453 0.76 

 

3.00 1 6.93 73.30 60 14025 2011 0.82 

3.75 1 8.66 72.72 60 17662 3503 0.91 

4.25 1 9.81 72.34 60 20115 4706 0.96 

4.75 1 10.97 71.95 60 22591 6068 0.99 

6.35 1 14.66 70.72 60 30670 11370 1.00 

H 2.65 1 45.49 45.49 6.69 12055 1366 0.76 

 

3.00 1 45.53 45.53 7.57 13657 1875 0.81 

3.75 1 45.61 45.61 9.46 17105 3241 0.90 

4.25 1 45.69 45.69 10.72 19416 4355 0.95 

4.75 1 45.77 45.77 11.98 21738 5633 0.99 

6.35 1 46.08 46.08 16.00 29261 10840 1.00 

* Vertex stiffener in alternate distribution, ℎ = 𝑤1 and 𝛽 = 𝜑 (see Figure 15(ii)). 

 


