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Abstract 
Tapered steel beams and columns have been increasingly used as primary load carrying members. The 
determination of their accurate ultimate capacity can only be achieved employing advanced numerical 
methods such as the finite element method (FEM). This paper presents a systematic study on the influence 
of FE model parameters on the ultimate load of I-section tapered beam-columns typically used in medium-
span steel frames. It aims the determination of optimal FE mesh size and sub-step number to be used during 
the arc-length scheme for the performance of an accurate, robust and efficient inelastic post-buckling 
parametric analysis (PA) as well as the evaluation of the parameters influence. Once validated the FE model, 
using hexahedral 8-node finite elements, FE edge sizes of 20, 25 and 30 mm and 10 sub-steps have been 
selected for use in the future PA. Several FE analyses were also carried out to evaluate how it is and quantify 
the influence of each of the parameters, leading to empirical equations with errors in the range of -35% to 
35% for equations without crossed terms and -23% to 23% with first-order crossed terms. 
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1 INTRODUCTION 

Non-prismatic (tapered) members are widely used in modern steel construction in Civil, Mechanical and 
Aeronautical industries, mostly due to their i) structural efficiency, ii) functionality and iii) low fabrication costs (Zhang 
and Tong 2008). Figure 1 shows some typical applications of tapered steel beams in Civil Engineering structures. 

 
Figure 1 Tapered steel roof beams: 

a) football stadium (Coimbra, Portugal), b) shopping mall (Medellin, Colombia). 

In order to take advantage of those benefits, accurate, simple and efficient design methods must be available. 
Nevertheless, it is well-known (Marques et al. 2012) that safety verifications in steel standards (CEN 2005, 2006, AISC 
2010, SA 2016), mostly adapted from prismatic member rules, might be unsafe (up to 300% in some cases – 
Bedynek et al. 2013), difficult to perform, and/or quite conservative (not taking advantage of the economy of non-
prismatic members). A commonly adopted alternative to those methods, as recommended by design codes, is the use 
of advanced (physically and geometrically nonlinear) finite element analysis (FEA), which is obviously unfeasible in 
current design practice due to their time and know-how requirements (besides involving expensive FEA software). 
Although the large amount of research performed in the last few decades, either concerning i) numerical/analytical 
formulations (Asgarian and Soltani 2011, Trahair 2014, Mohri et al. 2015, Ghadban et al. 2017, Kim and Jang 2017, 
Balduzzi et al. 2017, Lee and Lee 2018), or ii) design methods (Marques et al. 2012, Zhang et al. 2013, Papp 2016), it is 
still imperative the development of groundbreaking (i.e., simultaneously accurate, easy-to-use, versatile, efficient and 
affordable) design rules/tools for tapered steel members. 

In Civil Engineering, Artificial Neural Networks (ANN) have provided a convenient and often highly accurate solution 
to problems within all branches, appearing from publications statistics to be one of the great successes of computing 
(Flood 2008). The first journal article on civil engineering applications of neural networks was published by Adeli and Yeh 
(1989). The authors used a simple one-neuron model to the design of steel beams. Since then, many other applications 
of ANNs within all fields of Civil Engineering arose with increased complexity and sophistication (Adeli 2001). 

Areas like i) buckling load prediction (Mukherjee et al. 1996, Sharifi and Tohidi 2014), ii) bearing capacity prediction 
(Chuang et al. 1998, Gandomi et al. 2013), iii) constitutive modeling (Jung and Ghaboussi 2006, Oeser and Freitag 2016), 
iv) structural reliability and/or optimization (Adeli and Park 1995, Papadrakakis and Lagaros 2016), or  
v) structural health monitoring (Masri et al. 2000, Min et al. 2012), have received special focus until today. Many 
successful ANN-based models have been proposed to assess the behavior of metals and structures, when composed by 
prismatic members (Sourmail et al. 2002, Guzelbey et al. 2006, Efstathiadesa et al. 2007, Lu et al. 2009, Sheidaii and 
Bahraminejad 2012, Xu et al. 2013, Tohidi and Sharifi 2015, 2016, Nazari et al. 2015, Banu and Rani 2016). Several works 
have revealed a huge decrease in computing time when comparing the proposed ANN model with the FEA counterpart, 
and without compromising accuracy – e.g., when estimating the temperature of a tubular truss under fire, Xu et al. (2013) 
concluded that the ANN computes the desired output 1800 times faster than FEA. Surprisingly, unlike for prismatic 
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members, virtually no effort has been done to develop analysis and design methods for tapered metal members based 
on ANNs. 

2 OBJECTIVES 

The main objective of this research is to perform a large amount of FEA to have enough information to feed an ANN 
for an extensive parametric analysis (PA) and to determinate an empirical equation that can quickly predict the load 
capacity of an I-section tapered beam-column for designers who need to calculate new structures. When a large amount 
of FEA needs to be performed, as in this research, it should be noted that the savings of one second in each individual 
analysis allow savings of days in total CPU-time usage. 

The accuracy and analysis time of the FE simulations are highly dependent on the modelling techniques adopted. 
The first objective of the work presented in this paper is the use of FEA techniques as well as the discussion of how to 
use them, which lead to a reduced simulation time that still guarantees the quality of the results. The second one is to 
carry out a small part of the analyses, but in sufficient quantity, to be able to determine the influence of each of the 
parameters on the collapse load of the I-beam. 

To achieve these objectives, a FE model must first be created to guarantee the quality of the results. This model 
must represent the structure geometrically and have boundary conditions according to the real structure. The symmetry 
of the geometry and the boundary conditions, such as prescribed displacements and forces, must be used to decrease 
the size of the model to be simulated. The classic way to obtain reliable results is to perform a FE model validation by 
studying the influence of the mesh size on the results. Besides, it is important to define the conditions under which 
analyses will be carried out. Then, the sequence in which analyses need to be performed as well as the number of sub-
steps to be used during the arc-length scheme in the non-linear analyses need to be determined. After defining how the 
analyses should be performed, representative cases of the parameters values combinations must be chosen to verify the 
influence of each one of them on the results. 

This paper addresses details and important conclusions about how the mesh validation procedures and load sub-
step were carried out as well as the analysis of the parameters influence for the definition of an empirical equation were 
performed before the onset of the PA, all performed using the FE package ANSYS (Ansys Inc 2014). 

3 DESCRIPTION OF THE FINITE ELEMENT ANALYSIS 

The determination of the collapse load due to structural instability by the FEM is carried out in four basic steps: 
i) initially, a linear static analysis of the structure subjected to a unity load is performed to determine the stiffness matrix 
and the unit vector load; ii) then the elastic buckling analysis is carried out, given by the solution of the eigenproblem, in 
which the buckling shape is given by the eigenvector and the critical load by the eigenvalue of the stiffness matrix; iii) a 
proportion of the buckling shape is seen as a geometrical imperfection and is used to change the geometry of the 
structure and iv) finally, a quasi-static elastoplastic (non-linear) analysis is performed with a stop criterion, which can be 
the singularity of the stiffness matrix or a maximum displacement of a specif point in the structure. The collapse load is 
taken as the maximum load value obtained in the last analysis. 

Within this context, the work presented herein is part of an ongoing investigation that aims to propose an 
ANN-based design scheme (determination of elastic buckling and collapse loads) for I-section tapered beam-
columns (see Figure 2) used in typical medium-span steel frames, usually adopted in structural systems for industrial 
buildings, transportation stations and hubs, sporting facilities and multifunctional halls. The loading conditions 
presented in the figure represent the usual cases of this type of structure. The vertical symmetrical load occurs 
when the structure is subjected to its weight and other loads placed on it, such as the accumulation of snow for 
example. Symmetrical orthogonal loading is typical of frontal wind loading, while asymmetric loading is typical of 
lateral wind. 

For that purpose, the first step consists in the performance of an extensive parametric FEA for the computation of 
i) elastic buckling and ii) ultimate bearing capacity loads. The PA involves twelve independent (input) variables, as defined 
in Table 1. For the sake of completeness of the information, Table 1 shows fourteen variables, but both the Modulus of 
Elasticity and the Tangente Module can only assume a single value. All combinations of input variable values will be taken 
for the PA, resulting in a total of 295245 distinct beam-columns to be simulated. 
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Figure 2 I-section beam-columns adopted: a) geometrical parameters, b) cross-section, c) vertical symmetric loading, 
d) orthogonal symmetric loading, e) orthogonal asymmetric loading. 

Table 1 Variables and his values involved in the FE-based parametric analysis. 

INPUT VARIABLES  POSSIBLE VALUES 

Geometry Length L (m)  7 9 11 13 15 
Angle α (°)  5.0 17.5 30.0   

Height on fixed support Hs (m)  0.490 0.795 1.100   
Height in the sym. plane Hp (m)  0.230 0.420 0.610   

Flange width bf (m)  0.180 0.225 0.270   
Flange thickness tf (m)  0.010 0.020 0.030   
Web thickness tw (m)  0.008 0.012 0.016   

Geometrical 
Imperfection 

Global geom. imperf. δg (m)  0 L / 2000 L / 1000   

Membrane 
Residual 
Stresses 

Distribution model    ECCS (1984) Swedish code 
(BSK 99, 2003) 

Wang et al. 
(2012) 

  

Material (bi-
linear law) 

Yield stress Sy (N/m2)  290E+6 335E+6 380E+6   
Modulus of Elasticity E (N/m2)  210E+9     

Tangent Module E / Et   10000     
Loading Symmetry    symmetric asymmetric    

Force direction    vertical orthogonal    
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4 PRELIMINARY RESULTS 

4.1 Mesh size and number of sub-steps 

Since member flanges and webs cannot be considered thin-walled for all cases to be simulated in the PA, hexahedral 
8-nodes FEs, SOLID185 in Ansys Inc. (2014), were adopted. In order to determinate the appropriate mesh size, it is 
necessary to choose some combinations of the parameters shown in Table 1, since this analysis cannot be performed for 
all possible parameter combinations. It is known that the time of a FEA grows with the number of degrees of freedom. 
Therefore, for a given geometry, the use of the largest possible finite element edge size leads to the smaller number of 
elements, nodes, and degrees of freedom and, consequently, less analysis time. Within this point of view three beam-
columns features were chosen: i) small, in which each parameter assumes the lowest value present in Table 1, ii) large, 
in which each parameter assumes the highest value, and iii) intermediate, in which the parameters are given by average 
values. These features were used to obtain the ideal mesh size for this investigation, i.e. yielding accurate results in the 
shortest time possible. At this stage, no residual stresses and only the vertical symmetric loading were used. With this 
option, only nine of the twelve parameters remain variable, and the featuring used in each of the three cases are shown 
in Table 2. The FE model of these three cases is shown in Figure 3. The beam images are approximately on the same 
scale. The dashed lines in part a) of the figure are horizontal and vertical and represent the longitudinal median plane. 
Part b) is a zoom of the region close to the symmetry plane. 

Table 2 Beam-columns featuring. 

feature small intermediate large 

L (m) 7 11 15 
α (°) 5.0 17.5 30.0 

Hs (m) 0.490 0.795 1.100 
Hp (m) 0.230 0.420 0.610 
bf (m) 0.180 0.225 0.270 
tf (m) 0.010 0.020 0.030 
tw (m) 0.008 0.012 0.016 
δg (m) L / 2000 L / 1000 L / 500 

Sy (N/m2) 290E+06 335E+06 380E+06 

 
Figure 3 I-section beam-columns model adopted: a) perspective view, b) region close to the symmetry plane: 

i) small case, ii) intermediate case, iii) large case. 
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Due to the small flange and web thickness, only one FE was employed through it. The remaining (and equal) FE edge 
sizes were made variable. For the three cases, analyses with FE edge size from 10 mm to 150 mm were performed. The 
results were plotted in Figure 4 which shows the collapse load as a function of a) the number of degrees of freedom of 
the model and b) the FE edge size. A horizontal dashed red line was then drawn at the collapse load value 1% above that 
obtained for the 10 mm FE edge size case. It can be seen that in the three cases the collapse load obtained for FE edge 
size up to 30 mm are bellow this line. Therefore, the use of FE, with any of the simulated dimensions, below the dashed 
line leads to similar results, which can be considered “exact”, as they are in accordance with the criteria used to adopt 
this value in parametric analyses. It was then decided to use 30 mm edges that implies in a smaller number of degrees 
of freedom and consequently a shorter simulation time. When looking at part b) of the figure, the red dashed line can 
only be seen as a reference value. However, when looking at part a) of the same figure, it is clear that below the line 
there is an almost null gradient of the collapse load, while above this value there is a gradient close to infinity. This change 
in the value of the curve gradient (inflection) is also a good indicator of the FE edge size to be used. 

Altair HyperWorks (2011) recommends that the FE aspect ratio is greater than 0.33, but the minimum value of 0.4 
was adopted in this work. Thus, whenever the 30 mm of FE edge does not guarantee that minimum, the exact values 
leading to a 0.4 aspect ratio are employed – 20 mm whenever the web thickness equals 8 mm, and 25 mm otherwise if 
a flange thickness of 10 mm is used. 

Once fixed the FE edge size, the number of sub-steps used per load step of the iterative arc-length scheme 
(employed to obtain the equilibrium path), was set as a parametric variable taking distinct values from 1 to 20 for each 
member – a reliable FE mesh characterized by an element edge of 20 mm was used in all cases. In the end, it was decided 
to adopt 10 sub-steps, since it is the value leading to the shortest analysis time and less than 1% difference for the 
ultimate load values obtained with 20 sub-steps (assuring precise results). 

 
Figure 4 Collapse Load (kN) as a function of the: a) the number of degrees of freedom (1000), b) FE edge size (mm): 

i) small case, ii) intermediate case, iii) large case. 

4.2 Parameter influence 

4.2.1 Finite Element Analysis 

Having defined the FE size to be used, it starts by analysing the joint influence on the collapse load of two of the 
parameters shown in Table 2, while the other parameters remain constant. As there are nine parameters, five analysis 
groups are necessary and one of the parameters will be present in two of the groups. The following analyses were chosen 
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for each of the three cases (small, intermediate and large): Collapse Load as a function of i) Length and Angle, ii) Length 
and Flange width, iii) Height on fixed support and Height in the symmetry plane, iv) Flange thickness and Web thickness 
and v) Yield stress and Geometrical imperfection. 

Figures 5 to 9 show these results. Each of the figures is organized as follows: column a) presents the Collapse Load 
as a function of parameter 1 for different values of parameter 2, column c) presents the same results by inverting 
parameters 1 and 2 and column b) shows a three-dimensional graph of the Collapse Load as a function of the two 
parameters simultaneously. Line i) shows the results of the small case, line ii) of the intermediate and line iii) of the large 
one. 

 
Figure 5 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Angle (°), c) Angle (°): 

i) small case, ii) intermediate case, iii) large case. 

 
Figure 6 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Flange width (m), c) Flange width (m): 

i) small case, ii) intermediate case, iii) large case. 
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Figure 7 Collapse Load (kN) as a function of the: a) Height on fixed support (m), 
b) Height on a fixed support (m) and Height in the symmetry plane (m), c) Height in the symmetry plane (m): 

i) small case, ii) intermediate case, iii) large case. 

 

Figure 8 Collapse Load (kN) as a function of the: a) Flange thickness (m), 
b) Flange thickness (m) and Web thickness (m), c) Web thickness (m): 

i) small case, ii) intermediate case, iii) large case. 
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Figure 9 Collapse Load (kN) as a function of the: a) Yield stress (MPa), 
b) Yield stress (MPa) and Geometrical imperfection (m), c) Geometrical imperfection (m): 

i) small case, ii) intermediate case, iii) large case. 

It is observed that the results of the Collapse Load as a function of each of the parameters are very similar in the 
three cases, so from this point on only the intermediate one will be analysed. It is also verified that the variation of the 
Collapse Load as a function of the parameters Height on a fixed support, Height in the symmetry plane, Flange width, 
Flange thickness, Web thickness and Yield stress presents a behavior very close to linear. Except for the case in which the 
Geometric imperfection is zero, the behavior of the Collapse Load can also be considered very close to linear and 
therefore this case will be disregarded in the next analyses. When analysing the behavior as a function of the Angle, it 
appears that in the vast majority of the cases the Collapse Load passes through a maximum point for the Angle equal to 
17.5 degrees. Among the several possible ones, it was decided to use the quadratic function to approximate the obtained 
results, and obviously, a negative coefficient for the quadratic term must be used. The Collapse Load behavior as a 
function of the Length is typically exponential and this function will be used to approximate the results. 

To better understand the influence of each of the parameters, approximation functions are determined to estimate 
the Collapse Load as a function of each pair of parameters, which can assume each of the values shown in Table 1, with 
the others parameters remaining constant with the values presented in the intermediate case of Table 2. Initially, this 
analysis was done without the use of crossed terms in the approximation function. Subsequently, for the cases in which 
the initial results were not adequate, approximations using crossed terms and even interpolation on all available points 
were used. 

4.2.2 Approximation function without crossed terms 

4.2.2.1 Linear / linear approximation 

Figures 10 to 30 show all cases in which the behavior of the Collapse Load as a function of all pairs of parameters is 
approximated by a linear function. Each of the figures is organized as follows: part a) presents the Collapse Load as a 
function of parameter 1 for different values of parameter 2, part b) presents the same results by inverting parameters 1 
and 2, part c) shows a three-dimensional graph of the Collapse Load as a function of the two parameters simultaneously 
and part d) shows the same three-dimensional graph of the obtained approximation function. 
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Figure 10 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Height in the symmetry plane (m), 
c) Height on fixed support (m) and Height in the symmetry plane (m), d) linear/linear approximation. 

 

Figure 11 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Flange width (m), 
c) Height on fixed support (m) and Flange width (m), d) linear/linear approximation. 
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Figure 12 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Flange thickness (m), 
c) Height on fixed support (m) and Flange thickness (m), d) linear/linear approximation. 

 

Figure 13 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Web thickness (m), 
c) Height on fixed support (m) and Web thickness (m), d) linear/linear approximation. 
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Figure 14 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Yield stress (MPa), 

c) Height on fixed support (m) and Yield stress (MPa), d) linear/linear approximation. 

 
Figure 15 Collapse Load (kN) as a function of the: a) Height on fixed support (m), b) Geometric imperfection (m), 

c) Height on fixed support (m) and Geometric imperfection (m), d) linear/linear approximation. 
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Figure 16 Collapse Load (kN) as a function of the: a) Height in the symmetry plane (m), b) Flange width (m), 

c) Height in the symmetry plane (m) and Flange width (m), d) linear/linear approximation. 

 
Figure 17 Collapse Load (kN) as a function of the: a) Height in the symmetry plane (m), b) Flange thickness (m), 

c) Height in the symmetry plane (m) and Flange thickness (m), d) linear/linear approximation. 
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Figure 18 Collapse Load (kN) as a function of the: a) Height in the symmetry plane (m), b) Web thickness (m), 

c) Height in the symmetry plane (m) and Web thickness (m), d) linear/linear approximation. 

 
Figure 19 Collapse Load (kN) as a function of the: a) Height in the symmetry plane (m), b) Yield stress (MPa), 

c) Height in the symmetry plane (m) and Yield stress (MPa), d) linear/linear approximation. 
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Figure 20 Collapse Load (kN) as a function of the: a) Height in the symmetry plane (m), b) Geometrical imperfection (m), 
c) Height in the symmetry plane (m) and Geometrical imperfection (m), d) linear/linear approximation. 

 

Figure 21 Collapse Load (kN) as a function of the: a) Flange width (m), b) Flange thickness (m), 
c) Flange width (m) and Flange thickness (m), d) linear/linear approximation. 
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Figure 22 Collapse Load (kN) as a function of the: a) Flange width (m), b) Web thickness (m), 
c) Flange width (m) and Web thickness (m), d) linear/linear approximation. 

 

Figure 23 Collapse Load (kN) as a function of the: a) Flange width (m), b) Yield stress (MPa), 
c) Flange width (m) and Yield stress (MPa), d) linear/linear approximation. 
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Figure 24 Collapse Load (kN) as a function of the: a) Flange width (m), b) Geometrical imperfection (m), 
c) Flange width (m) and Geometrical imperfection (m), d) linear/linear approximation. 

 

Figure 25 Collapse Load (kN) as a function of the: a) Flange thickness (m), b) Web thickness (m), 
c) Flange thickness (m) and Web thickness (m), d) linear/linear approximation. 
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Figure 26 Collapse Load (kN) as a function of the: a) Flange thickness (m), b) Yield stress (MPa) (m), 

c) Flange thickness (m) and Yield stress (MPa), d) linear/linear approximation. 

 
Figure 27 Collapse Load (kN) as a function of the: a) Flange thickness (m), b) Geometrical imperfection (m), 

c) Flange thickness (m) and Geometrical imperfection (m), d) linear/linear approximation. 
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Figure 28 Collapse Load (kN) as a function of the: a) Web thickness (m), b) Yield stress (MPa), 

c) Web thickness (m) and Yield stress (MPa), d) linear/linear approximation. 

 
Figure 29 Collapse Load (kN) as a function of the: a) Web thickness (m), b) Geometrical imperfection (m), 

c) Web thickness (m) and Geometrical imperfection (m), d) linear/linear approximation. 
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Figure 30 Collapse Load (kN) as a function of the: a) Yield stress (MPa), b) Geometrical imperfection (m), 

c) Yield stress (MPa) and Geometrical imperfection (m), d) linear/linear approximation. 

For each pair of parameters analysed, Table 3 presents the figure in which the results of the analysis are shown, the 
approximation function and the error range in which the differences between the results obtained in the FEA and the 
approximation functions are found. Negative values indicate that the result obtained in the approximation function is 
less than that in the FEA. In this and the other analysis that will be presented, the null Geometrical imperfection was 
suppressed in determining the approximation function. Except for two cases, all error modules between the 
approximation function and the FEA are below 10%. This result is a first indication that the choice of linear functions for 
the analysis of the influence of these parameters may be adequate. 

Table 3 Linear / linear approximation function. 

Parameters Figure Approximation Function Error Range 

Hs x Hp 10d 17.9850 + 121.7235 × 𝐻𝐻𝑠𝑠 + 98.9381 × 𝐻𝐻𝑝𝑝 -3.97% to 3.43% 
Hs x bf 11d −72.0582 + 121.5051 × 𝐻𝐻𝑠𝑠 + 590.5014 × 𝑏𝑏𝑓𝑓  -8.46% to 6.38% 
Hs x tf 12d −53.4217 + 123.8998 × 𝐻𝐻𝑠𝑠 + 5589.5876 × 𝑡𝑡𝑓𝑓 -13.89% to 14.98% 
Hs x tw 13d −25.9347 + 128.1617 × 𝐻𝐻𝑠𝑠 + 6847.7297 × 𝑡𝑡𝑤𝑤 -10.39% to 8.69% 
Hs x Sy 14d −62.7264 + 127.2146 × 𝐻𝐻𝑠𝑠 + 0.3608 × 𝑆𝑆𝑦𝑦 -3.31% to 2.14% 
Hs x δg 15d 58.8991 + 127.2186 × 𝐻𝐻𝑠𝑠 − 122.2884 × 𝛿𝛿𝑔𝑔 -1.91% to 2.21% 
Hp x bf 16d −5.4330 + 93.1264 × 𝐻𝐻𝑝𝑝 + 554.2283 × 𝑏𝑏𝑓𝑓  -2.18% to 2.69% 
Hp x tf 17d 8.0969 + 94.3507 × 𝐻𝐻𝑝𝑝 + 5485.5708 × 𝑡𝑡𝑓𝑓 -7.35% to 4.70% 
Hp x tw 18d 29.9246 + 103.4737 × 𝐻𝐻𝑝𝑝 + 7091.4315 × 𝑡𝑡𝑤𝑤 -4.88% to 3.22% 
Hp x Sy 19d −6.8312 + 95.1199 × 𝐻𝐻𝑝𝑝 + 0.3785 × 𝑆𝑆𝑦𝑦 -2.22% to 1.92% 
Hp x δg 20d 121.5024 + 94.8580 × 𝐻𝐻𝑝𝑝 − 101.9965 × 𝛿𝛿𝑔𝑔 -1.64% to 1.75% 
bf x tf 21d −76.4869 + 545.1089 × 𝑏𝑏𝑓𝑓 + 5594.6737 × 𝑡𝑡𝑓𝑓 -9.41% to 7.62% 
bf x tw 22d −52.5854 + 540.7963 × 𝑏𝑏𝑓𝑓 + 7454.3996 × 𝑡𝑡𝑤𝑤 -5.19% to 4.82% 
bf x Sy 23d −88.1212 + 569.5954 × 𝑏𝑏𝑓𝑓 + 0.3594 × 𝑆𝑆𝑦𝑦 -3.49% to 2.32% 
bf x δg 24d 34.1984 + 566.3630 × 𝑏𝑏𝑓𝑓 − 76.5365 × 𝛿𝛿𝑔𝑔 -0.87% to 1.32% 
tf x tw 25d −46.1103 + 5493.3751 × 𝑡𝑡𝑓𝑓 + 7819.0364 × 𝑡𝑡𝑤𝑤 -7.24% to 7.41% 
tf x Sy 26d −74.6151 + 5588.2153 × 𝑡𝑡𝑓𝑓 + 0.3657 × 𝑆𝑆𝑦𝑦 -7.16% to 5.55% 
tf x δg 27d 49.1193 + 5589.0297 × 𝑡𝑡𝑓𝑓 − 78.6824 × 𝛿𝛿𝑔𝑔 -7.16% to 5.55% 
tw x Sy 28d −58.1174 + 7178.9590 × 𝑡𝑡𝑤𝑤 + 0.3959 × 𝑆𝑆𝑦𝑦 -2.05% to 1.93% 
tw x δg 29d 68.5953 + 7672.0109 × 𝑡𝑡𝑤𝑤 − 69.8072 × 𝛿𝛿𝑔𝑔 -1.31% to 1.92% 
Sy x δg 30d 40.3416 + 0.3674 × 𝑆𝑆𝑦𝑦 − 84.6634 × 𝛿𝛿𝑔𝑔 -0.18% to 0.31% 
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4.2.2.2 Approximation quadratic/linear 

Figures 31 to 37 show all cases in which the behavior of the Collapse Load is approximated by a quadratic function 
of the Angle and a linear function of the other parameter. Each of the figures is organized as follows: part a) presents the 
Collapse Load as a quadratic function of the Angle for different values of the other parameter, part c) presents the 
behavior as a linear function of the other parameter for different values of the Angle, part b) shows a three-dimensional 
graph of the Collapse Load as a function of the Angle and the other parameter simultaneously, part d) shows the same 
three-dimensional graph of the obtained approximation function and part e) shows an interpolation function that will be 
commented in section 4.2.4. 

 
Figure 31 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Height on fixed support (m), 

c) Height on fixed support (m), d) quadratic/linear approximation, e) polynomial interpolation. 

 
Figure 32 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Height in the symmetry plane (m), 

c) Height in the symmetry plane (m), d) quadratic/linear approximation, e) polynomial interpolation. 
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Figure 33 Collapse Load (kN) as a function of the: a) Angle (°),b) Angle (°) and Flange width (m), 

c) Flange width (m), d) quadratic/linear approximation, e) polynomial interpolation. 

 
Figure 34 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Flange thickness (m), 

c) Flange thickness (m), d) quadratic/linear approximation, e) polynomial interpolation. 

 
Figure 35 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Web thickness (m), 

c) Web thickness (m), d) quadratic/linear approximation, e) polynomial interpolation. 
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Figure 36 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Yield stress (MPa), 

c) Yield stress (MPa), d) quadratic/linear approximation, e) polynomial interpolation. 

 
Figure 37 Collapse Load (kN) as a function of the: a) Angle (°), b) Angle (°) and Geometrical imperfection (m), 

c) Geometrical imperfection (m), d) quadratic/linear approximation, e) polynomial interpolation. 

For each pair of parameters analysed, Table 4 presents the figure in which the results of the analysis are shown, the 
approximation function and the error range in which the differences between the results obtained in the FEA and the 
approximation functions are found. The error modules between the approximation function and the FEA are in a similar 
amount above and below 10%. These results indicate that choosing a quadratic function for the Angle and a linear for 
the other parameters, without the use of crossed terms, may not be the best choice. 

Table 4 Quadratic / linear approximation function. 

Parameters Figure Approximation Function Error Range 

α x Hs 31d −54.7977 + 12.2651 × 𝛼𝛼 − 0.2828 × 𝛼𝛼2 + 108.6789 × 𝐻𝐻𝑠𝑠 -11.15% to 16.24% 
α x Hp 32d 4.6165 + 12.0572 × 𝛼𝛼 − 0.2785 × 𝛼𝛼2 + 70.9860 × 𝐻𝐻𝑝𝑝 -15.30% to 15.49% 
α x bf 33d −77.4611 + 12.3326 × 𝛼𝛼 − 0.2832 × 𝛼𝛼2 + 484.9467 × 𝑏𝑏𝑓𝑓 -5.97% to 6.88% 
α x tf 34d −57.8400 + 12.1983 × 𝛼𝛼 − 0.2808 × 𝛼𝛼2 + 4517.2407 × 𝑡𝑡𝑓𝑓 -15.66% to 28.82% 
α x tw 35d −39.8588 + 12.6050 × 𝛼𝛼 − 0.2939 × 𝛼𝛼2 + 5893.7496 × 𝑡𝑡𝑤𝑤 -7.11% to 9.06% 
α x Sy 36d −69.4094 + 12.4685 × 𝛼𝛼 − 0.2873 × 𝛼𝛼2 + 0.3031 × 𝑆𝑆𝑦𝑦 -5.39% to 6.21% 
α x δg 37d 33.3505 + 12.5037 × 𝛼𝛼 − 0.2881 × 𝛼𝛼2 − 97.9661 × 𝛿𝛿𝑔𝑔 -0.42% to 6.21% 
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4.2.2.3 Approximation exponential / linear 

Figures 38 to 44 show all cases in which the behavior of the Collapse Load is approximated by an exponential 
function of the Length and a linear function of the other parameter. Each of the figures is organized as follows: part a) 
presents the simulated Collapse Load as an exponential function of the Length for different values of the other 
parameter, part c) presents the behavior as a linear function of the other parameter for different values of the Length, 
part b) shows a three-dimensional graph of the simulated Collapse Load as a function of the Length and the other 
parameter simultaneously, part d) shows the same three-dimensional graph of the obtained approximation function and 
part e) shows another approximation function that will be commented in the section 4.2.3. 

 
Figure 38 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Height on fixed support (m), 

c) Height on fixed support (m), d) exponential/linear approximation, e) crossed terms approximation. 

 
Figure 39 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Height in the symmetry plane (m), 

c) Height in the symmetry plane (m), d) exponential/linear approximation, e) crossed terms approximation. 
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Figure 40 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Flange width (m), 

c) Flange width (m), d) exponential/linear approximation, e) crossed terms approximation. 

 
Figure 41 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Flange thickness (m), 

c) Flange thickness (m), d) exponential/linear approximation, e) crossed terms approximation. 

 
Figure 42 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Web thickness (m), 

c) Web thickness (m), d) exponential/linear approximation, e) crossed terms approximation. 
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Figure 43 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Yield stress (MPa), 

c) Yield stress (MPa), d) exponential/linear approximation, e) crossed terms approximation. 

 
Figure 44 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Geometrical imperfection (m), 

c) Geometrical imperfection (m), d) exponential/linear approximation, e) crossed terms approximation. 

For each pair of parameters analysed, Table 5 presents the figure in which the results of the analysis are shown, the 
approximation function and the error range in which the differences between the results obtained in the FEA and in the 
approximation functions are found. Except for one case, all error modules between the approximation function and the 
FEA are above 10%. This result is a strong indication that choosing an exponential function for the Length and a linear 
function for the other parameters, without the use of crossed terms, is inadequate. 

Table 5 Exponential / linear approximation function. 

Parameters Figure Approximation Function Error Range 

L x Hs 38d −73.9241 + 1228.3516 × 𝑒𝑒−0.2123×𝐿𝐿 + 146.0879 × 𝐻𝐻𝑠𝑠 -27.61% to 16.34% 
L x Hp 39d −14.6492 + 1382.7316 × 𝑒𝑒−0.2117×𝐿𝐿 + 100.3342 × 𝐻𝐻𝑝𝑝 -16.42% to 11.11% 
L x bf 40d −129.6579 + 1634.6916 × 𝑒𝑒−0.2119×𝐿𝐿 + 608.2416 × 𝑏𝑏𝑓𝑓  -37.40% to 24.35% 
L x tf 41d −116.3923 + 1453.5446 × 𝑒𝑒−0.2051×𝐿𝐿 + 6411.7363 × 𝑡𝑡𝑓𝑓 -75.31% to 47.14% 
L x tw 42d −74.6543 + 1267.6747 × 𝑒𝑒−0.2052×𝐿𝐿 + 8731.7787 × 𝑡𝑡𝑤𝑤 -28.97% to 17.14% 
L x Sy 43d −135.6542 + 1562.5285 × 𝑒𝑒−0.2101×𝐿𝐿 + 0.4404 × 𝑆𝑆𝑦𝑦 -30.32% to 20.36% 
L x δg 44d 41.6261 + 1244.0453 × 𝑒𝑒−0.2095×𝐿𝐿 − 200.8136 × 𝛿𝛿𝑔𝑔 -1.91% to 1.11% 

4.2.2.4 Approximation exponential / quadratic 

Figure 45 shows the case in which the behavior of the Collapse Load is approximated by an exponential function of 
the Length and a quadratic function of the Angle. The figure is organized as follows: part a) presents the simulated 
Collapse Load as an exponential function of the Length for different values of the Angle, part c) presents the behavior as 
a quadratic function of the Angle for different values of the Length, part b) shows a three-dimensional graph of the 
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simulated Collapse Load as a function of the Length and the Angle simultaneously, part d) shows the same three-
dimensional graph of the obtained approximation function and part e) shows another approximation function that will 
be commented in the section 4.2.4. 

 
Figure 45 Collapse Load (kN) as a function of the: a) Length (m), b) Length (m) and Angle (°), 

c) Angle (°), d) exponential/quadratic approximation, e) crossed terms approximation. 

For the pair of parameters analysed, Table 6 presents the figure in which the results of the analysis are shown, the 
approximation function and the error range in which the differences between the results obtained in the FEA and in the 
approximation functions are found. The error module between the approximation function and the FEA is much more 
than 10%. This result is a strong indication that choosing an exponential function for the Length and a quadratic function 
for the Angle, without the use of crossed terms, is inadequate. 

Table 6 Exponential / quadratic approximation function. 

Parameters Figure Approximation Function Error Range 

L x α 45d −70.8955 + 1361.8295 × 𝑒𝑒−0.2495×𝐿𝐿 + 13.5577 × 𝛼𝛼 − 0.2941 × 𝛼𝛼2 -61.60% to 34.42% 

4.2.2.5 Global analysis 

Table 7 shows the obtained values for each of the coefficients of the terms used in the approximation functions 
presented in sections 4.2.2.1 to 4.2.2.4, their means and standard deviations, as well as the ratio between them. For five 
of the coefficients listed in the table, the ratio between the mean and the standard deviation is above and for six 
coefficients the ratio is below 0.1 (10%). This is also a clear indication that, in general, the used interpolation functions, 
without using crossed terms, are not adequate. 

Table 7 Term weight of the approximation function. 

 x.eL ex.L x.α x.α2 x.Hs x.Hp x.bf x.tf x.tw x.Sy x.δg 

values 1228.352 -0.212 13.558 -0.294 146.088 100.334 608.242 6411.736 8731.779 0.440 -200.814 
1382.732 -0.212 12.265 -0.283 108.679 70.986 484.947 4517.241 5893.750 0.303 -97.966 
1634.692 -0.212 12.057 -0.279 121.724 98.938 590.501 5589.588 6847.730 0.361 -122.288 
1453.545 -0.205 12.333 -0.283 121.505 93.126 554.228 5485.571 7091.432 0.379 -101.997 
1267.675 -0.205 12.198 -0.281 123.900 94.351 540.109 5594.674 7454.400 0.359 -76.537 
1562.529 -0.210 12.605 -0.294 128.162 103.474 540.796 5493.375 7819.036 0.366 -78.682 
1244.045 -0.210 12.469 -0.287 127.215 95.120 569.595 5588.215 7178.959 0.396 -69.807 
1361.830 -0.250 12.504 -0.288 127.219 94.858 566.363 5589.030 7672.959 0.367 -84.663 

mean (𝑥𝑥) 1391.925 -0.214 12.499 -0.286 125.561 93.898 556.848 5533.679 7336.255 0.371 -104.094 
standard 

deviation (𝑠𝑠) 
149.710 0.014 0.463 0.006 10.369 9.905 37.305 510.036 820.457 0.039 42.571 

ratio (𝑠𝑠 |𝑥𝑥|⁄ ) 0.108 0.067 0.037 0.020 0.083 0.105 0.067 0.092 0.112 0.104 0.409 
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The approximation functions hitherto found can be improved with the use of crossed terms, shown in section 4.2.3, 
or can be replaced by interpolation functions presented in section 4.2.4. 

4.2.3 Approximation functions with crossed terms 

In order to show how an approximation function can be improved with the use of crossed terms, it was used all 
cases in which one of the parameters is the Length (sections 4.2.2.3 and 4.2.2.4). Approximation functions with nine 
terms were used, in which the Collapse Load is given by an exponential function of the Length, whose terms are quadratic 
functions of the other parameter. The graphs of the new approximation functions using crossed terms are shown in part 
e) of figures 38 to 44 of section 4.2.2.3 and in part e) of figure 45 of section 4.2.2.4. Table 8 presents the error range of 
the analyses without the crossed terms, the figure in which the results of the analyses are shown, the approximation 
function with crossed terms and the new error range in which the differences between the results obtained in the FEA 
and in the approximation functions are found. All error modules between the approximation function and the FEA are 
below 5%. These results show a significant improvement in the approximation functions and that they are well suited for 
obtaining the Collapse Load. 

Table 8 Approximation function with crossed terms. 

Parameters  without crossed 
terms 

 with crossed terms 

  Error Range  Figure Approximation Function Error Range 
L x α  -61.60% to 34.42%  45e (37.5704− 0.7833 × 𝛼𝛼 + 0.05595 × 𝛼𝛼2) + 

+𝑒𝑒(6.2541+0.03641×𝛼𝛼+0.0007388×𝛼𝛼2) × 
× 𝑒𝑒(−0.2686+0.1104×𝛼𝛼−0.0004369×𝛼𝛼2)×𝐿𝐿 

-4.48% to 4.49% 

L x Hs  -27.61% to 16.34%  38e (21.3459− 9.8882 × 𝐻𝐻𝑠𝑠 + 19.0107 × 𝐻𝐻𝑠𝑠2) + 
+𝑒𝑒(6.4153+1.2170×𝐻𝐻𝑠𝑠−0.4169×𝐻𝐻𝑠𝑠2) × 
× 𝑒𝑒(−0.2562+0.09356×𝐻𝐻𝑠𝑠+0.04403×𝐻𝐻𝑠𝑠2)×𝐿𝐿 

-1.68% to 1.68% 

L x Hp  -16.42% to 11.11%  39e �27.0847 + 25.3666 × 𝐻𝐻𝑝𝑝 + 19.7522 × 𝐻𝐻𝑝𝑝2� + 
+𝑒𝑒�6.9497+0.5690×𝐻𝐻𝑝𝑝−0.3929×𝐻𝐻𝑝𝑝2� × 
× 𝑒𝑒�−0.2331+0.09312×𝐻𝐻𝑝𝑝−0.08840×𝐻𝐻𝑝𝑝2�×𝐿𝐿 

-1.00% to 1.00% 

L x bf  -37.40% to 24.35%  40e �6.4782 + 129.9715 × 𝑏𝑏𝑓𝑓 + 104.3642 × 𝑏𝑏𝑓𝑓2� + 
+𝑒𝑒�6.7577+0.7584×𝑏𝑏𝑓𝑓+3.7369×𝑏𝑏𝑓𝑓

2� × 
× 𝑒𝑒�−0.3221+0.9399×𝑏𝑏𝑓𝑓−1.9480×𝑏𝑏𝑓𝑓

2�×𝐿𝐿 

-1.87% to 1.87% 

L x tf  -75.31% to 47.14%  41e �1.0516 + 2192.9476 × 𝑡𝑡𝑓𝑓 − 9208.3708 × 𝑡𝑡𝑓𝑓2� + 
+𝑒𝑒�5.6203+108.8318×𝑡𝑡𝑓𝑓−1543.7851×𝑡𝑡𝑓𝑓

2� × 
× 𝑒𝑒�−0.1621−3.6690×𝑡𝑡𝑓𝑓+64.7076×𝑡𝑡𝑓𝑓

2�×𝐿𝐿  

-1.56% to 1.56% 

L x tw  -28.97% to 17.14%  42e (−20.5758 + 7771.0520 × 𝑡𝑡𝑤𝑤 − 218719.5822 × 𝑡𝑡𝑤𝑤2 ) + 
+𝑒𝑒(5.6346+184.0293×𝑡𝑡𝑤𝑤−5027.8065×𝑡𝑡𝑤𝑤2 ) × 
× 𝑒𝑒(−0.1272−11.5806×𝑡𝑡𝑤𝑤+393.4179×𝑡𝑡𝑤𝑤2 )×𝐿𝐿 

-1.00% to 1.00% 

L x Sy  -30.32% to 20.36%  43e �24.1082 − 0.01060 × 𝑆𝑆𝑦𝑦 + 0.0001205 × 𝑆𝑆𝑦𝑦2� + 
+𝑒𝑒�5.9708+0.004178×𝑆𝑆𝑦𝑦−0.000002240×𝑆𝑆𝑦𝑦2� × 
× 𝑒𝑒�−0.2433+0.0002301×𝑆𝑆𝑦𝑦−0.0000003856×𝑆𝑆𝑦𝑦2�×𝐿𝐿 

-1.23% to 1.23% 

L x δg  -1.91% to 1.11%  44e �42.1091− 138.3378 × 𝛿𝛿𝑔𝑔 + 1671.5931 × 𝛿𝛿𝑔𝑔2� + 
+𝑒𝑒�7.1510−5.3824×𝛿𝛿𝑔𝑔+123.5945×𝛿𝛿𝑔𝑔2� × 
× 𝑒𝑒�−0.2123+0.4480×𝛿𝛿𝑔𝑔−10.0207×𝛿𝛿𝑔𝑔2�×𝐿𝐿 

-1.00% to 1.00% 

4.2.4 Interpolation 

To show how it is also possible to replace the approximation functions with an interpolation function, the cases in 
which the Angle is one of the parameters (section 4.2.2.2) were used. As in all the analyses presented here, nine different 
FEA were performed to obtain the Collapse Load, the corresponding interpolation function is also composed of nine 
terms. The independent term and products of up to the second order of the involved parameters in each case were used. 
The graphs of the interpolation functions are shown in part e) of figures 31 to 37 of section 4.2.2.2. Table 9 presents the 
error range of the analysis without the crossed terms, the figure in which the results of the analysis are shown and the 
interpolation function with crossed terms. The new error range is not presented because interpolation functions go 
through all the calculated points, therefore there is no error. 
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Table 9 Polynomial interpolation. 

Parameters  without crossed 
terms 

 with crossed terms 

  Error Range  Figure Interpolation Function 
α x Hs  -11.15% to 16.24%  31e −2.2426 + 3.4170 × 𝛼𝛼 + 52.8670 × 𝐻𝐻𝑠𝑠 − 0.09216 × 𝛼𝛼2 − 

−11.7927 × 𝐻𝐻𝑠𝑠2 + 14.2490 × 𝛼𝛼 × 𝐻𝐻𝑠𝑠 − 0.3081 × 𝛼𝛼2 × 𝐻𝐻𝑠𝑠 − 
−3.5731 × 𝛼𝛼 × 𝐻𝐻𝑠𝑠2 + 0.07825 × 𝛼𝛼2 × 𝐻𝐻𝑠𝑠2 

α x Hp  -15.30% to 15.49%  32e 71.8887 + 4.0469 × 𝛼𝛼 − 130.7781 × 𝐻𝐻𝑝𝑝 − 0.1267 × 𝛼𝛼2 + 
+87.1399 × 𝐻𝐻𝑝𝑝2 + 27.5905 × 𝛼𝛼 × 𝐻𝐻𝑝𝑝 − 0.5424 × 𝛼𝛼2 × 𝐻𝐻𝑝𝑝 − 
−17.8470 × 𝛼𝛼 × 𝐻𝐻𝑝𝑝2 + 0.3791 × 𝛼𝛼2 × 𝐻𝐻𝑝𝑝2 

α x bf  -5.97% to 6.88%  33e −40.5653− 1.0722 × 𝛼𝛼 + 435.5458 × 𝑏𝑏𝑓𝑓 + 0.05942 × 𝛼𝛼2 − 
−496.0185 × 𝑏𝑏𝑓𝑓2 + 86.0856 × 𝛼𝛼 × 𝑏𝑏𝑓𝑓 − 2.2804 × 𝛼𝛼2 × 𝑏𝑏𝑓𝑓 − 
−114.7575 × 𝛼𝛼 × 𝑏𝑏𝑓𝑓2 + 3.2798 × 𝛼𝛼2 × 𝑏𝑏𝑓𝑓2 

α x tf  -15.66% to 28.82%  34e 18.2404 + 1.5826 × 𝛼𝛼 + 653.2332 × 𝑡𝑡𝑓𝑓 − 0.03866 × 𝛼𝛼2 + 
+2570.8812 × 𝑡𝑡𝑓𝑓2 + 631.6991 × 𝛼𝛼 × 𝑡𝑡𝑓𝑓 − 14.5011 × 𝛼𝛼2 × 𝑡𝑡𝑓𝑓 − 
−4324.8847 × 𝛼𝛼 × 𝑡𝑡𝑓𝑓2 + 102.6601 × 𝛼𝛼2 × 𝑡𝑡𝑓𝑓2 

α x tw  -7.11% to 9.06%  35e −12.4707 + 8.3472 × 𝛼𝛼 + 5384.2985 × 𝑡𝑡𝑤𝑤 − 0.2386 × 𝛼𝛼2 − 
−137552.1201 × 𝑡𝑡𝑤𝑤2 + 211.8357 × 𝛼𝛼 × 𝑡𝑡𝑤𝑤 + 2.9240 × 𝛼𝛼2 × 𝑡𝑡𝑤𝑤 + 
+11093.5809 × 𝛼𝛼 × 𝑡𝑡𝑤𝑤2 − 584.3435 × 𝛼𝛼2 × 𝑡𝑡𝑤𝑤2  

α x Sy  -5.39% to 6.21%  36e −7.1400 + 1.7385 × 𝛼𝛼 + 0.1669 × 𝑆𝑆𝑦𝑦 − 0.05758 × 𝛼𝛼2 − 
−0.0001464 × 𝑆𝑆𝑦𝑦2 + 0.03659 × 𝛼𝛼 × 𝑆𝑆𝑦𝑦 − 0.0007682 × 𝛼𝛼2 × 𝑆𝑆𝑦𝑦 − 
−0.00001344 × 𝛼𝛼 × 𝑆𝑆𝑦𝑦2 + 0.0000002434 × 𝛼𝛼2 × 𝑆𝑆𝑦𝑦2 

α x δg  -0.42% to 6.21%  37e −34.6333 + 12.4262 × 𝛼𝛼 − 231.3904 × 𝛿𝛿𝑔𝑔 − 0.2874 × 𝛼𝛼2 − 
−2027.8656 × 𝛿𝛿𝑔𝑔2 + 4.4141 × 𝛼𝛼 × 𝛿𝛿𝑔𝑔 + 0.04541 × 𝛼𝛼2 × 𝛿𝛿𝑔𝑔 + 
+98.5389 × 𝛼𝛼 × 𝛿𝛿𝑔𝑔2 − 5.9088 × 𝛼𝛼2 × 𝛿𝛿𝑔𝑔2 

4.2.4 Approximation function of five parameters 

From the previous analyses, it is observed that the collapse load has a behavior close to the linear concerning five 
geometric parameters, the Height on fixed support Hs, the Height in the symmetry plane Hp, the Flange width bf, the 
Flange thickness tf and the Web thickness tw. As each parameter can assume three values, there are 243 possible 
combinations of these five parameters. To show even more how this analysis can be improved, the 243 FEA are carried 
out and the results are used to determine the approximation function of these five parameters without the use of crossed 
terms (Equation 1). 

𝐹𝐹 = −140.66 + 71.06 × 𝐻𝐻𝑠𝑠 + 81.90 × 𝐻𝐻𝑝𝑝 + 122.79 × 𝑏𝑏𝑓𝑓 + 4100.1 × 𝑡𝑡𝑓𝑓 + 6398.1 × 𝑡𝑡𝑤𝑤  (1) 

Equation 1 leads to an error range of -35% to 35%, with frequency distributed according to the histogram of 
Figure 46, with a mean value of -5.0% and a standard deviation of 14.8%. 

 
Figure 46 Frequency of results by error percentage range of an approximation function without crossed terms. 

A better approximation can be obtained using crossed terms. The approximation function is given by Equation 2 
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𝐹𝐹 = −58.32− 15.39 × 𝐻𝐻𝑠𝑠 + 22.10 × 𝐻𝐻𝑝𝑝 + 155.93 × 𝑏𝑏𝑓𝑓 − 719.7 × 𝑡𝑡𝑓𝑓 + 1188.9 × 𝑡𝑡𝑤𝑤 + 31.95 × 𝐻𝐻𝑠𝑠 × 
𝐻𝐻𝑝𝑝 + +238.63 ×𝐻𝐻𝑠𝑠 × 𝑏𝑏𝑓𝑓 + 1378.6 ×𝐻𝐻𝑠𝑠 × 𝑡𝑡𝑓𝑓 + 2487 × 𝐻𝐻𝑠𝑠 × 𝑡𝑡𝑤𝑤 + 90.6 × 𝐻𝐻𝑝𝑝 × 𝑏𝑏𝑓𝑓 + 1683 × 𝐻𝐻𝑝𝑝 × 𝑡𝑡𝑓𝑓 + 

3717 × 𝐻𝐻𝑝𝑝 × 𝑡𝑡𝑤𝑤 + +2326 × 𝑏𝑏𝑓𝑓 × 𝑡𝑡𝑓𝑓 − 3816 × 𝑏𝑏𝑓𝑓 × 𝑡𝑡𝑤𝑤 + 195070 × 𝑡𝑡𝑓𝑓 × 𝑡𝑡𝑤𝑤  (2) 

Equation 2 leads to an error range of -23% to 23%, with frequency distributed according to the histogram of Figure 
47, with a mean value of -3.9% and standard deviation of 11.8%. 

 
Figure 47 Frequency of results by error percentage range of an approximation function with crossed terms. 

5 CONCLUSIONS 

The objectives of this work have been achieved. Initially, the ideal FE edge size was determined to perform the 
analyses with the guarantee of the quality of the results. In the general case, the FE edge size of 30 mm was used. For a 
Web thickness of 8 mm, a FE edge size of 20 mm was used and for a Flange thickness of 10 mm, FE edge size of 25 mm 
was used. The results to determine the ideal number of loading sub-steps have not been presented. They are only the 
information of the simulation time for each number of loading sub-steps used. The minimum time condition was reached 
for 10 loading sub-steps. 

Then, a large number of simulations for different parameters combinations were carried out to determine the 
influence of each one of them on the Collapse Load of the I-section tapered beam. With this information, various graphs 
were drawn up which made it possible to observe and to quantify the influence of each parameter. It was then found 
that the parameters Height on fixed support, Height in the symmetry plane, Flange width, Flange thickness, Web 
thickness, Global geometrical imperfection and Yield stress linearly influence the response, while the Angle influences 
quadratically and the Length logarithmically. The influence of the combination of two parameters, which individually 
influence linearly on the Collapse Load, can be represented by an approximation function without using crossed terms 
with errors of less than 10%. The joint influence of two parameters without the use of crossed terms, when one of them 
has quadratic or logarithmic individual influence, led to major errors. This discrepancy between the approximation 
functions and the FEA was improved to values below 5% when using crossed terms. Finally, the approximation function 
for five geometric parameters with individual linear influence was presented. Without the use of crossed terms the error 
range was from -35% to 35%, but with the use of first-order crossed terms the error was reduced to the range of -23% 
to 23% 

Obtaining approximation functions with minor errors without first carrying out all 295245 PA is irrelevant, as it 
would be expensive and in the future modified by additional information. However, the results obtained so far show that 
this research must be continued and that after the completion of all PAs, an ANN and an empirical approximation 
equation with very acceptable errors will probably be obtained. 

6 FUTURE RESEARCHES 

Once validated the FE model and the influence of the various parameters on the Collapse Load is evaluated, the 
authors aim to run the PA with all possible combinations of values presented in Table 1, and then study the influence of 
several input (independent) variables on the Elastic Buckling and Collapse Load. Lastly, the PA-based data will be used to 
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develop an ANN-based and empirical equations to accurately and efficiently predict the Buckling or Collapse Load of any 
member within the variable ranges presented in Table 1. 
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