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Abstract  

The work deals with a boundary value problem for a quasilinear partial elliptical equation. The equation describes a stationary 
process of convective diffusion near a cylinder and takes into account the value of a chemical reaction for large Peclet numbers 
and for large constant of chemical reaction. The quantity the rate constant of the chemical reaction and Peclet number is assumed 
to have a constant value. The leading term of the asymptotics of the solution is constructed in the boundary layer as the solution 
for the quasilinear ordinary differential equation. In this paper, we construct asymptotic expansion of solutions for a quasilinear 
partial elliptical equation in the boundary layer near the cylinder. 
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1 Introduction 

The stationary convective diffusion equation in the presence of a bulk chemical reaction is given by (e.g., see [1, 2]) 
 ),(),( UFkUVPeU v+⋅∇=∆    (1.1) 
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is the stream function [3], r and θ  are polar coordinates, ∆  is the Laplace operator, Pe is the Peclet number, and νk  is parameter 

depending on the chemical reaction rate. The angle θ  is measured relative to the free-stream direction. 

Problems analogous to (1.1) and (1.2), and a broader class of problems, were considered in [1,2], [4-6, 9, 10 ]. In the 
absence of chemical reaction, problem (1.1) and (1.2) was analyzed in [4, 5] by the method of matched asymptotic expansions [7, 
8]. It is well known (see, for example, [2, Chapter 5, (6.1)-(6.3)]) that, in the limit cases 1>>Pe , constk =ν ; constPe =  and 

Pek >>ν , the solution to problem (1.1) and (1.2) is simplified. 

In the case when the volume chemical reaction of the first order (F(u) = u) the asymptotics of solution in all space outside 
the drop was constructed in [9]. In study, the number Pekνµ =0 is assumed to have a constant value. 

It is assummed that F(C) is continuous and  
 F: R1→ R1, F(0) = 0, F'(0)=0, 0 < F''(С),   (1.5) 

and the asymptotic is 
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2 The diffusion boundary layer. 

In this report the quantity Pekνµ =  is assumed to have a constant value. In this case, all terms in Eq. (1) are similar in order 

of magnitude in the neighborhoods of saddle points. The small parameter 2/1)( −= Peε  is introduced for convenience, and Eq. (1) 

is rewritten as 
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When 0=ε  the Eq. (1) has the suddle points ),1(1 πO  and )0,1(2O  and the equation is equivalent the dynamical system.  

The asymptotic expansions (AE) of the solution in the diffusion boundary layer was considered in a earlier study [11]. This 
solution was continued up to the front stagnation point ),1(1 πO  (up to the line πθ = ). The natural variables in the diffusion 



boundary layer are θε ),1(1 −= − rt . The AE of the solution ),,( εθtu  is sought as 

 0 1( , , ) ( , ) ( , )u t u t u tθ ε θ ε θ= + +…    (2.2) 

From (2.1), (2.2) and (1.1) – (1,4), in variables θ,t , determining ),(0 θtu  in the domain t<<< 0,20 πθ , we obtain the 

problem 
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 0 (0, ) 1;u θ =  0 ( , ) 0u t θ →  as .t → ∞    (2.4) 

The asymptotics of the solution to the problem (2.3), (2.4) function 0 ( , )u t θ  as πθ →  is [11] 

 )),exp()(()( 22
0,0 tOtu δθπ −−+     

where )),(exp()( 2
0,0 tOtu δ−=  0>δ . 

 

3 The asymptotics ),(0 θtu  as 0→θ . 

The asymptotics of the function ),(0 θtu  as 0θ →  is sought in the view 

 2
0 ( ) ( ),V t O θ+    (3.1) 

where the function )(0 tV  is constructed [12] for small µ as the solution for the problem 
 0))(()()()( 00000 =−′−′′=− tVFtVttVVFLV µµ    (3.2) 
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Theorem 1. Let F(u) satisfies conditions (1.5), (1.6) and const=µ , then at ∞→t  the solution of the equation (3.2) 

asymptotics holds 
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where 
11,0 =c , constc −2,0 , 3

3
1,02,1 Fcc −= , 12

2,13,2 )1,023( −−= ccc ,  

)2,12,023,222,1
2

1,033(
1,023

1
3,1 cccccF

c
c ++

−
= , )2,0

2
1,0332

2,04
4

1,03,1(
1,023

1
3,0 ccFcFcc

c
c +++

−
= , …. . 

The idea of the proof is similar to works [13, 14]. Let us search the function )(0 tV  in the form of the sum 
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Substituting sum (3.5) into equation (3.2), we obtain the problem  
 )())()(( 1 tHVFVwFLw nnn −=−+− µ ,   (3.6) 

 ,0)(,0)( ' →→ twtw  for ∞→t ,   (3.7) 

where ( )δ+−−= 1)(ln)( n
n tOtH , δ -sufficiently small. 

Let's consider the problem 
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  ,0)(,0)( ' →→ twtw  for ∞→t ,  (3.9) 

where problem (3.6), (3.7) is equivalent to a problem (3.8), (3.9) and 
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For construction the solution )(xw  of the problem (3.8), (3.9) we obtain integral equation 
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where )(),( 21 tt ϕϕ  are linearly independent  solutions to the linear homogeneous equation: 

  ,0)( =′−′−′′ wVFwtw nµ   (3.12) 

)2exp()( 2ttW =  is the Wronskian. 

We have asymptotics for )(
1

tϕ , )(
2

tϕ , using the results of the works [15, 16] 
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where 0 δ<  - is small. Such solutions )(),( 21 tt ϕϕ of the equation (3.12) exists. 

For )()()()( 2121 tsst ϕϕϕϕ −  we find estimate 

 ( ) ( )( )

( ) ( )( )

2

2

1 2 2 1 12
1 2 1 2

1 2 2 1 12

( ) ( ) ( ) ( ) ( ln ) ( ln ) 1 (ln ) (ln )

( ln ) ( ln ) 1 (ln ) (ln ) .

s

t

t s s t e s s C t C O t O s

e t t C s C O s O t

δ δ

δ δ

ϕ ϕ ϕ ϕ µ µ

µ µ

− − − + − +

− − − + − +

− = + + + + −

− + + + +

  (3.15) 

We proceed by applying the method of successive approximations. 
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We choose ,00 ≡w  
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From (3.6), (3.13) – (3.17) it is  find estimate 
 δ+−≤ ntMw )(ln1  , (3.18) 

then by formulas (3.10), (3.13) – (3.18) we have 

  
( )

( )

1
2 1 1 2 1 2 1

1 2 1 2
1 2 1 2 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( ) ( ) ( , ) (ln ) (ln ) , 1,
2

n
t

n n
n

t

w t w t W s t s s t g V w ds

MW s t s s t g V w w ds MK t t tδ δ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ µ

∞
−

∞
− − + + − +

− ≤ − − ≤

′≤− − ≤ ≤ >>

∫

∫

 (3.19) 

δµ 22
1212 )(ln),(),(),( +−≤−′≤− n

nnn tMKwwVwgwVgwVg . 
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There exist 0>M  that for solution of the equation (3.11) inequality is hold 
δ+−≤ ntMtw )(ln2)( . 

 

4 Numerical solution and finding the constant С  . 

We rewrite Eq. (3.2) in the form of the system 

 
)).(()()(

)()(

0
'

'
0

tvFtzttz
tztv
⋅+=

=

⎩
⎨
⎧

µ
  (4.1) 

Consider system (4.1) on the interval [0, 0X ], Following [17, 18], we first discuss the stability conditions for the explicit 

Euler scheme 
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Replacing )( nvF  by the sum ))(()( 00
'

0 vvvFvF n −+  and assuming that ,, 00 vt  and 0z  are known and htt nn += −1 , 

we find a solution to difference scheme (4.2).  
The stability condition for difference scheme (4.2) is fulfilled [17-19] if 

1||,0,1|)( 0
' <<<<⋅⋅ hXhtFh µ . 

This implies that one should take 0X  and integrate backwards (i. e., with increments 0<h ) in the interval [0, 0X ]. The 
initial conditions at the point 0X  the form 



 ,000 )( VXv =  ,)( 00 ZXz =   (4.3) 

where 00 ,ZV  are found from  (3.4) 
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For example, let 2( ) ln (1 ).F u u= +  

The results of the numerical analysis of the problem (4.1), (4.3) for )1(ln)( 2 uuF +=  are ( for ]2,5.0[∈µ , 12,0 =с  ) 

µ  = 0.5, 0С = 1.7216, z(0) = -0.1173;  µ  = 1, 0С = 1.3943, z(0) = -1.3943; 
µ  = 1.5, 0С = 1.0452, z(0) = -0.2994; µ  = 2, 0С = 0.6737, z(0) = -0.3747. 
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