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Abstract 
Aiming at multiscale numerical investigations of fibrous connective 
tissues, the present work proposes a finite strain viscoelastic model 
suitable to represent the local mechanical response of living cells in 
conjunction with finite element simulations of nanoindentation 
tests. The material model is formulated in a thermodynamically 
consistent framework based on a variational constitutive approach. 
As a case of study, a numerical investigation of the local compress-
ible response of fibroblast cells is addressed. Moreover, a set of 
cyclic, stress relaxation and creep experiments are simulated in 
order to investigate the capability of the model to predict rate 
dependence of cells, showing sound agreement with experimental 
data. The proposed model may be used as a suitable tool for a 
better understanding of stiffness and energetic dissipation of cells. 
 
Keywords 
Living cells, Viscoelasticity, Constitutive model, AFM nanoinden-
tation, Multiscale. 
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1 INTRODUCTION 

Withstanding mechanical loadings is the primary function of many biological connective tissues 
such as tendons, ligaments and cartilage. The mechanical response to external loadings are highly 
dependent on their hierarchical microstructure, cellular organization and interactions between one 
another (Lavagnino et al., 2015).  

On its hierarchy inside the tissue, cells are subjected to a complex mechanical environment (Qi 
et al., 2006). These mechanical stimuli are transduced by cells into biochemical signals leading to 
tissue adaptation. The particular mechano-chemical pathways that induce changes in tissue mor-
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phology are usually known as mechanotransduction mechanisms (Lavagnino et al., 2015; Wang, 
2006). 

Regardless their physiological functions, living cells are structural units holding particular non-
linear behaviors, including viscous and plastic effects (Bonakdar et al., 2016; Haase and Pelling, 
2015; Nawaz et al., 2012). Accordingly, cells may present important mechanical contributions in the 
macroscopic response of tissues, where multiscale analysis can be employed to investigate these mi-
cromechanical behaviors. 

In multiscale numerical analyses based on representative volume elements (RVE), the homoge-
nized behavior relies strongly on how accurate the behavior of each material phase is represented by 
corresponding specific material models. In addition, these models must show sound agreement with 
experimental data at that scale, specifically in cases where these phases present nonlinear behavior 
and are subjected to finite strains. 

Several measurement techniques have been employed to assess the mechanical response of living 
cells, such as micropipette aspiration, magnetic and optical tweezers and atomic force microscopy 
(AFM) indentation, also known as nanoindentation test (Haase and Pelling, 2015; Janmey and 
McCulloch, 2007; Kollmannsberger and Fabry, 2011). Among these experimental methods, the later 
provides a convenient structure to finite element simulations. For instance, whereas the cell sample 
can be considered locally as a homogenous medium, the tip of the indenter is modeled as a rigid 
body. 

With these motivations in mind and aiming future numerical multiscale investigations of fibrous 
soft tissues, the present work proposes a finite strain viscoelastic model suitable to represent the 
local mechanical response of living cells in conjunction with finite element simulations of nanoinden-
tation tests. The proposed model is formulated in a thermodynamically consistent framework based 
on the variational formalism addressed in Ortiz and Stainier (1999) and Radovitzky and Ortiz 
(1999), particularized in Fancello et al. (2006) and Vassoler et al. (2012) to viscoelastic materials. In 
addition, an alternative incremental solution strategy is proposed. 

This manuscript is organized as follows. Section 2 presents the theoretical background employed 
to model the viscoelastic behavior of cells. Aiming finite element simulations, the continuum consti-
tutive equations are discretized in time, leading to a variational constitutive update algorithm, 
shown in section 3. In order to verify if the material model is able to represent the available experi-
mental data, section 4 addresses a set of numerical simulations of nanoindentation experiments of 
fibroblast cells. In addition, the compressible and viscoelastic responses of the model are studied. 
Particularities of the finite element simulations and further discussions about the mechanical behav-
ior of cells are highlighted in section 5. Finally, appendices provide operational details and the ana-
lytical expression for the consistent material tangent modulus. 
 
2 CONTINUUM FORMULATION 

2.1 Constitutive Modeling of Dissipative Materials in a Variational Framework 

The constitutive modeling of dissipative materials can be cast in a thermodynamically consistent 
framework by defining a potential function, in present case the Helmholtz free energy ( ),y F a , and 

a so-called dissipation pseudo-potential function ( ), ; ,¡ F Fa a   (de Souza Neto et al., 2009; Jirásek 
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and Bazant, 2002). The argument of the free energy, in the case of an isothermal process, is the 
thermodynamic state defined by the deformation gradient F  and a set of internal variables a . The 
dissipation potential ¡ , on the other hand, depends also on the corresponding rates F  and a , 
where the semicolon in the argument list indicates the state variables play a role of parameters. For 
the sake of clarity, only the dependence on the rates is kept henceforward in the notation of this 
potential. 

It is hypothesized that ( ),= Fa a a  , which allows the following decoupling: 
 

( ) ( ) ( )¡ = +  , : .j fF Fa a  (2.1)
 

Based on these assumptions, it is shown in Ortiz and Stainier (1999) and Radovitzky and Ortiz 
(1999) that a potential   of the form 
 

( ) ( ) ( ) ( ) ( ), ,
, : , , ,    :

y y
y y

¶ ¶
= + ¡ = + ⋅

¶ ¶

F F
F F F F

F

a a
a a a a

a
         (2.2)

 

may be defined such that the optimality condition of the minimization problem 
 

( )arg inf ,= F
a

a a


   (2.3)
 

provides a thermodynamically consistent equation for the evolution of the internal variables:  
 

( ) ( ),y f¶ ¶
+ =

¶ ¶

F
0

a a
a a




. (2.4)

 

The first Piola-Kirchhoff stress tensor is computed from the first partial derivative of the rate 
potential with respect to F . Moreover, the rate potential evaluated at the minimizer argument of 
(2.2) defines a reduced potential red , whose total derivative with respect to F  also results in the 
first Piola-Kirchhoff stress tensor: 
 

( ) ( )
( ) ( )

red
red

,d
,    : inf ,

d
where   

jy ¶¶¶
= = = + =

¶¶ ¶

FF
P F F

FF F F a

a
a




    

 
  . (2.5)

 

Potential red  plays an important role in present framework, since its incremental counterpart 
presents a compelling mathematical structure for the calculation of the incremental updates of the 
internal variables. 
 
2.2 Thermodynamic Potentials for a Class of Viscoelastic Models 

The classic multiplicative decomposition of the deformation gradient F  is used herein to separate 

elastic eF  and viscous vF  contributions: 
 

( ) ( )e v e e v v,   : det 0,   : det 0J J= = > = >F F F F F . (2.6)
 

Based on this, total, elastic and viscous right Cauchy-Green strain tensors are given, respective-
ly, by 
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T T Te e e v v v: ,    : ,    := = =C F F C F F C F F . (2.7)
 

Similarly, total and viscous rate of deformations are formally defined as  
 

( )
( ) ( )

1

1v v v v v v

: sym ,       ,

: sym ,    skew ,

-

-

= =

= = = =

d l l FF

d l l F F l 0



  (2.8)

 

where the assumption of null inelastic spin is used (Anand and Gurtin, 2003; Gurtin and Anand, 
2005). 

The proposed model follows the rheological assembly illustrated in Figure 1. According to this, 
the set of internal variables is reduced to { }v:= Fa , and the Helmholtz free energy and dissipation 

potential take the form: 
 

( ) ( ) ( )e e v v: ,    :y y y f f¥= + =C C d . (2.9)
 

The superscript ¥ represents the time-independent response. As can be noted, the dissipation 
potential j  of equation (2.1) is null. Moreover, the arguments of the potentials (2.9) are objective 

entities (Gurtin et al., 2010). 
 

 

Figure 1: Schematic representation of the rheological model. 

 
In view of (2.9), the rate potential (2.2) reduces to the expression:  

 

( ) ( ) ( )v v v v, : ,y f= +F F F F d     (2.10)
 

with vd  depending on vF  by means of (2.8). Equation (2.10) provides a continuum background for 
the variational approach introduced in section 2.1. The incremental counterpart of the constitutive 
equations and numerical issues are addressed in the next section.  
 
3 INCREMENTAL FORMULATION 

3.1 Incremental Potential and Updating Rule for the Internal Variable 

An incremental counterpart of the rate potential (2.10) is used to directly compute the incremental 
internal variable updates needed in finite element schemes. Considering a time increment 

1n n
t t t

+
D = - , a possible general expression for this incremental potential is 



848     T.A. Carniel and E.A. Fancello / Modeling the Local Viscoelastic Behavior of Living Cells Under Nanoindentation Tests 

Latin American Journal of Solids and Structures 14 (2017) 844-860 

( ) ( ) ( ) ( )1 1 1 1
v v v v v

inc , : , ,n n n n n n
nt

t
J

y y f+ + + +
+

é ù= - + D ê úë ûF F F F F F d


 , (3.1)
 

where the variables ( )v vFd
 

 and vF


 are discrete approximations for the rates vd  and vF . One can 

note that vf  is evaluated at an intermediate time 
n
t

J+
 inside the time increment, where the param-

eter 0,1J é ùÎ ë û  is closely related to the discretization rule employed for vF


. The consistency of the 

incremental form (3.1) can be verified if inc0tD   =  . 

The most common option to obtain an update expression for the internal variable 1
v
n+F , in func-

tion of the discrete tensor vd


, is the well-known exponential mapping (Weber and Anand, 1990): 
 

( )1

1 1
v v v v v v vexpn (

1
l )n n n nt
t

-

+ +» == D
D

d d F F F d F
 

. (3.2)

 

This choice has been extensively used in combination with the spectral parameterization of vd


 
to handle arbitrary isotropic hyperelastic potentials or in combination with Hencky’s isotropic mod-
el to obtain some numerical advantages (Fancello et al., 2006; Fancello et al., 2008; Vassoler et al., 
2012). Moreover, under an incompressible viscous flow assumption, the incremental relation 

( )vtr 0=d


 ( )1
vdet 1n+ =F  is automatically fulfilled. 

Another alternative expression to obtain the updated value 1
v
n+F  is based on the classical Euler 

integration rule: 
 

( )1

1
v v v v v vv ,   1n n n nJ J J J

-

+ + +» = = - +d d F F F FF


, (3.3)

 

( )1
vv v v1

n n
t

+ -
D

» =F F F F
 . (3.4)

 

When 1J = , a fully implicit integration scheme is recovered. In this case, substituting equation 
(3.4) into (3.3) leads to the following updating rule:  
 

( )1

1v v v
n nt+

-
= -DF I d F 


, (3.5)

 

where I  is the second order identity tensor.  
In view of the parameterization (3.5), the resulting variational problem is formulated in a fully 

tensorial format. While this implies the simultaneous evaluation of a set of independent compo-
nents, the formulation remains able to handle anisotropic behaviors. Moreover, neither the spectral 

decomposition of vd


, nor the first and second derivatives of these spectral quantities are needed. In 
addition, if the viscous flow is considered incompressible, it is enforced into the variational problem 
by means of a Lagrangian functional (further details in next section).  

To end this section it is worth mentioning that, even both approaches are quite different, is not 
the goal of the present work to compare and quantify its numerical advantages or drawbacks. 
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3.2 Constitutive Algorithm 

The local constitutive algorithm is composed by two main stages: the solution of the variational 
principle and the stress evaluation. Accordingly, the general concepts introduced in section 2 are 
particularized to the present class of viscoelastic models. 
 
3.2.1 Solution of the Variational Principle 

In view of the parameterization (3.5), the viscous rate of deformation becomes the primal variable 
of the variational problem. Moreover, in the present modeling, the viscous flow is considered incom-
pressible. Therefore, the minimum principle (2.3) can be presented as 
 

 

opt

v 1

v
inc cte

arg inf
nso + =Î

=
Fd

d 



 , (3.6)

 

where ( ){ }1
v v vdet 1nso ym +

é ùÎ =ê úë ûd F d
 

:=   represents the isochoric viscous space and ym  the 

space of symmetric second order tensors. The kinematic constraint ( )1 1
v v: det 1n nJ + += =F  is taken 

into account by means of the Lagrangian functional 
 

( ) ( )11 1

v v
inc, : 1nn n

Jg g ++ +
= + -d


  , (3.7)

 

where 
1n

g
+  is a Lagrange multiplier. Consequently, the minimum principle (3.6) can be rewritten as 

an unconstrained problem, such that, 
 

( )
( )1 v 1

1

optv
cte,

sta, arg t 
n

n
ng

g
+

+
+

=
=

Fd
d 


 . (3.8)

 

The solution of (3.8) defines the internal variable updates algorithm. Once the optimal solution 
optvd


 is obtained from (3.8), the internal variable 1

v
n+F  is updated by equation (3.5). The proposed 

solution strategy is based on the full Newton-Raphson procedure, where further operational details 

are addressed in appendix A. It is important to note that the symmetric nature of vd


 is not includ-
ed as a constraint into the problem (3.8). However, its symmetry is considered throughout the di-
rectional derivatives required by the Newton’s procedure, resulting in suitable Fréchet operators 
(see Itskov (2002) and Jog (2007) for further details about directional derivatives in symmetric 
spaces). In this particular case, the solutions of the principle (3.8) always return symmetric tensors 

vd


. 
 
3.2.2 Stress Evaluation and Consistent Material Tangent Modulus 

Once the solution of (3.8) is obtained, the stress can be updated as follows. Taking into account the 
incremental potential (3.1), the incremental first Piola-Kirchhoff stress tensor is given by 
 

1
optopt optv vv v v v1 1 1 1

e
inc

n

n n n n

y y y
+

+ + + +

¥

== =

æ ö¶ ¶ ¶ ¶ ÷ç ÷= +ç ÷ç= = ÷÷ç¶ ¶ ¶ ¶è ød dd d d d

P
F F F F    


. (3.9) 
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The partial derivatives of the Helmholtz strain energies in relation to 1n+F  result in 
 

1 -T

1 1 1 1 1 11 1

v e v,   :n n n n n nn n

-

+ + + + + ++ +
¥= = +P F S S S F S F , (3.10)

 

where 1n+S  is the second Piola-Kirchhoff stress tensor. In addition, the time-independent and elastic 

second Piola stresses are defined as 
 

1 1
1 1

e
e

e
: 2 ,   : 2

n n
n n

y y
+ +

+ +

¥
¥ ¶ ¶

= =
¶ ¶

S S
C C

. (3.11)

 

It should be noted that, due to the directional derivative of equation (3.9), the elastic second 
Piola-Kirchhoff stress tensor in (3.10) is consistently pulled back to the referential configuration. 

Within the framework of a conventional nonlinear finite element code, the consistent tangent 
modulus must be provided (Simo and Taylor, 1985). Therefore, a closed form for the consistent 
material tangent modulus is provided in appendix B. 
 
3.3 Choice of Specific Potentials 

A common assumption in the biomechanical modeling of cells is considering them as an incompress-
ible material. However, under physiological conditions, cells can experience large volume changes 
(Hamann et al., 2002; Zlotek-Zlotkiewicz et al., 2015). Based on these observations, the following 
Neo-Hookean and quadratic potentials are chosen to represent the viscoelastic behavior of living 
cells: 
 

( ) ( ) ( )

( ) ( )

2

e
e e e e

v
v v v

: tr 3 ln ln
2 2

: tr 3 ln
2

: :
2

J J

J

m k
y m

m
y m

h
f

¥ ¥
¥ ¥

ìïï é ù é ù= - - +ï ë û ë ûïïïïï é ù= - -í ê úë ûïïïïï =ïïïî

C

C

d d

, (3.12)

 

where { }e v, , ,m k m h¥ ¥  is the set of constitutive parameters to be identified according to experi-

mental data. In the expression y¥ , the parameter k¥ controls changes in volume, while m¥  ac-

counts for distortional effects. To ensure an incompressible behavior, k¥ typically takes values of 

( )3 410 10 m¥-  (Bonet and Wood, 2008). 

 
4 NUMERICAL SIMULATIONS AND RESULTS 

4.1 Compressibility of Fibroblast Cells 

AFM indentation experiments were carried out by Nawaz et al. (2012) in fibroblast cells. Authors 
reported cyclic experiments under indentation depth of 0.38 0.02 mm  at 0.8 m/sm  indentation 

rate, retrieving 72 5 pN indentation forces. The relative energy dissipated by the hysteresis loop 

reached a value of 30 5 %  (Figure 3-a).  
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Numerical simulations of these experiments were run with a rigid 1.98 mm  diameter spherical 

indenter and a numerical sample with diameter of 10 mm  and height of 4 mm . As can be seen from 

Figure 2, the cell sample is considered locally homogeneous and it was discretized by 8,130  quadratic 

hexahedral elements with reduced integration. Due to symmetry, only a quarter of the sample was 
modeled. Moreover, frictionless contact was considered in the interface between sample and indent-
er. 

The finite element simulations presented herein were run in the software Abaqus, where the 
proposed viscoelastic model was implemented into the user-subroutine UMAT. 
 

           

(a)      (b) 

Figure 2: Finite element model employed for the simulations of nanoindentation tests. (a) Perspective  

view of the model showing the spherical indenter and the cell sample in a quarter symmetry.  

(b) Top view of the numerical sample emphasizing the mesh refinement. 

 
Using this finite element setup, a set of numerical simulations evaluated the capability of pre-

sent material model to represent the experimental data, considering different compressibility levels. 

To this aim, for increasing values of k¥ , the parameter m¥  was kept fixed and the viscoelastic 

parameters em  and vh  were adjusted in order to fit the numerical curves to the range of the exper-

imental data (see Table 1). 
 

Potential Parameter Sim. 1 Sim. 2 Sim. 3 Sim. 4 

y¥  
 [Pa]m¥  20 20 20 20 

 [Pa]k¥  80 800 8,000 80,000 

ey  e  [Pa]m  60 48 40 40 

vf  v  [Pa s]h ⋅  80 58 50 50 

Table 1: Constitutive parameters related to the numerical curves shown in Figure 3. 

 
Figure 3-a compares the force-displacement curves of the indenter obtained from the experiments 

and Simulation 1. Figure 3-b show the corresponding results obtained with all simulations. Finally, 

XY

Z

X

Y

Z
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Figure 4 depicts the displacement and the von-Mises (Cauchy) stress fields at maximum penetration 
of the indenter for Simulation 4. 
 

    

(a)       (b) 

Figure 3: (a) Comparison between experimental and numerical results obtained from the nanoindentation tests.  

The experimental points were plotted based on data provided by Nawaz et al. (2012). (b) Sensitivity of the  

numerical results in relation to the incompressible response of the model.  

The related constitutive parameter sets are shown in Table 1. 

 
In order to gain a better understanding of how the parameters of Table 1 affect the incompressi-

ble response of the model, simulations of homogeneous uniaxial tensile tests were performed. Figure 

5-a display the uniaxial first Piola-stretch curves, while the corresponding time history of the Jaco-

bians are shown in Figure 5-b. All simulations were run under an engineering strain rate of 10.05 s- . 
 

     

(a)      (b) 

Figure 4: Displacement (a) and von-Mises stress (b) fields at the instant  

of the maximum penetration of the indenter for Simulation 4. 
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(a)      (b) 

Figure 5: Stress-stretch curves (a) and time history of the volumetric jacobians (b) obtained from simulations  

of homogeneous uniaxial tensile tests. The related constitutive parameter sets are shown in Table 1. 

 
4.2 Cyclic, Stress Relaxation and Creep Tests 

Identification procedures often recover material parameters that successfully reproduce the used set 
of experimental data. However, it is not unusual these parameters fail to predict the behavior of the 
same material under a mechanical condition different from (but close to) that identified. In order to 
gain confidence on the behavior of the proposed model using the identified parameters, a brief sensi-
tivity analysis considering different mechanical tests was carried out. 

The same finite element model of the previous section with constitutive parameters of Simula-
tion 1 (Table 1) was used.  

A first set of numerical tests considering cyclic indentations with 0.5 mm  depth at indentation 

rates of 0.1 , 0.5 , 1.0  and 10 m/sm , was run. The corresponding force-displacement curves are dis-

played in Figure 6-a. Different hystereses are seen, depending on the indentation rate. The relative 
percentage of the energy dissipated at each hysteresis loop is shown in Figure 6-b. Moreover, a quad-
ratic trend curve is fitted in order to better illustrate how the dissipated energy changes within the 
range of indentation rates. 

Besides cyclic tests, stress relaxation and creep AFM indentation tests are also found in the lit-
erature as efficient experiments to get information on the viscoelastic properties of cells (Haase and 
Pelling, 2015; Moreno-Flores et al., 2010). Based on this motivation, a set of relaxation and creep 
simulations under different load conditions were tested, as shown in Figure 7. Concerning the relaxa-
tion tests, three indentation depths of 0.1, 0.3 and 0.5 mm  were applied at a 10 m/sm  rate, and 

then the indenter was kept fixed for 10 seconds. The corresponding relaxation curves are displayed 
in Figure 7-a. Concerning the creep tests, three indentation forces of 10, 25 and 50 pN were progres-
sive and linearly applied in 0.05 seconds, and then kept constant for 16 seconds. The corresponding 
creep curves are shown in Figure 7-b. 
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(a)      (b) 

Figure 6: (a) Cyclic nanoindentation tests at different rates. (b) Relative loss  

of energy by the hysteresis loops computed from cyclic curves. 

 

    

(a)      (b) 

Figure 7: Mechanical responses predicted by the viscoelastic model when submitted to nanoindentation  

tests of stress relaxation (a) and creep (b) under different loading conditions. 

 
 
5 DISCUSSIONS AND FINAL REMARKS 

As can be seen from Figure 3, all numerical simulations were able to predict the local viscoelastic 
response of fibroblast cells under nanoindentation (in view of the standard deviations) using spheri-
cal indenter. In addition, the displacement and stress fields depicted in Figure 4 emphasize the nu-
merical results seem to present minimum influence of the boundaries of the sample. 
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Concerning to the numerical curves plotted in Figure 3-b, it can be seen that when incompressi-
bility is enforced, the force-indentation response changes its curvature within the firsts 0.1 mm  dis-

placement, diverging from the usual expected behavior. Based on these numerical results, one can 
hypothesize that cells seem to respond locally, under indentation tests, as a compressible material 
(see time histories of the volumetric jacobians plotted in Figure 5-b). However, further numerical and 
experimental investigations are required to support this hypothesis.  

Taking into account the cyclic numerical experiments displayed in Figure 6-a one can observe 
that, for the identified material parameters, the dissipation decreases when the indentation rate 
increases. The energetic loss is quantified by the hysteresis loop as shown in Figure 6-b. Moreover, 
one can see the percentage of hysteresis presents a nearly quadratic decay over rates.  

According to the relaxation and creep simulations shown in Figure 7, the material reaches equi-
librium states beyond 5 seconds in stress relaxation and 10 seconds in creep. These time scales pre-
dicted by the model show sound agreement with experimental data reported in Moreno-Flores et al. 
(2010).  

It is worth mentioning the use of analytical expressions based on Hertz contact model and in-
dentation tests to estimate the cell stiffness is common in the literature (technical details may be 
found elsewhere, Vinckier and Semenza (1998)). This approach, however, is quite sensitive to the 
indentation depth, since the Hertz expressions were tailored for linear elastic materials and infinites-
imal strains. In addition, it is unable to consider rate dependent effects. In contrast to these analyti-
cal approaches, the finite element simulation procedure presented in this work seems to provide a 
more accurate tool for a better understanding of stiffness and energetic dissipation of cells.  

Within a multiscale numerical framework of biological tissues, the present constitutive model 
may be employed to represent the microscopic material phases composed of cells and/or other iso-
tropic viscoelastic components as well, a necessary step for future developments in the mechanobiol-
ogy field, where the knowledge of the complex mechanical responses of cells are issues of major con-
cern. 
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APPENDIX A – SOLUTION OF THE LOCAL CONSTITUTIVE PROBLEM 

Herein are present the operational details related to the solution strategy employed to solve the 
variational constitutive principle (3.8). Furthermore, the nonlinear equations resulting from the 
stationarity condition are solved by the full Newton-Raphson procedure. 
 
A.1 Stationarity Condition 

In view of the variational principle (3.8), the stationarity condition is defined through the variation 
d 0=� , which results in the following equations: 
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The partial derivatives of (A.1) result in, 
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A.2 Newton-Raphson Procedure 

Concerning to the full Newton-Raphson procedure, one can define from the nonlinear equations 
(A.1) the quantities, 
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where 
1n+

r  is a residual and 
1n+

x  represents the set of unknown variables. Therefore, an increment 

d  related to a current iteration of the Newton’s algorithm, is computed from the linear system of 
equation, 
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which can be represented by the compact arrangement 
1 1 1n n n

d
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= -J rx . The symbol   repre-

sents the appropriate product between the Newton’s increments 
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In order to achieve the quadratic convergence rate provided by the Newton’s method, the de-
rivatives of equation (A.6) must be computed precisely. Accordingly, the second partial derivatives 
of (A.6) result in 
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where it is introduced the fourth order operators, 
 

1

2 2 e 2 v 2 e
inc

sym symv v v v v v v v
,    : : ,

n
t

y f y
+

¶ ¶ ¶ ¶
= + D = -

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶d d d d d d d d
          

 

( ) ( ) ( )T 1 1

1 1 1
1

1 1

eTT2 v v v v e v v
v

: : ,n n n n n
n

n n nt t +- - -

+ ++ ++

é ùé ù ¶ê úê ú= D + D ê úê ú ¶ë û ë û

M
F F F F M F F I

d
    

( ) ( )1 1 1
1 1

e e e
e e

v v v
: : ,n n n

n n
+ + +

+ +

é ù é ù¶ ¶ ¶ê ú ê ú= +ê ú ê ú¶ ¶ ¶ë û ë û

M C S
I S C I

d d d
     

  
1 1

1 1

1

e e
e

sym sym symv v
2 : : ,    : : ,n

n

n

n n
t t

+ + +
+ +¶ ¶

= - D = -D
¶ ¶

C S

d d
        

( )1

1

1

11 1

1

2 e
e v v e

e e
: ,    : 4 ,n

n n

n nn n

y
+

+ +

-

++ +

¶
= =

¶ ¶
C F F I

C C
   

  1
1 1

2 v
2 v

sym symv v
: : ,n

n n

J
t J+

+ +

¶
= D

¶ ¶d d
      

( ) ( ) ( ) ( )1 1 1 1

1 1 1 11

v v v v v v v v: .n n n n n n n nn

- - - -

+ + + ++
= Ä +F F F F F F F F   

(A.8)

 



T.A. Carniel and E.A. Fancello / Modeling the Local Viscoelastic Behavior of Living Cells Under Nanoindentation Tests     859 

Latin American Journal of Solids and Structures 14 (2017) 844-860 

In equations (A.8), sym  is the fourth order symmetric identity tensor. In addition, are intro-

duced the tensor products ( ) ( ) ( ):
ijkl ij kl

Ä =A B A B  and ( ) ( ) ( ):
ijkl ik jl

=A B A B , for any second 

orders tensors A  and B . 
 
APPENDIX B – CONSISTENT MATERIAL TANGENT MODULUS 

Taking into account a total Lagrangian formulation (Belytschko et al., 2000), the linearization of 
the equilibrium equations results in the material tangent modulus 
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where one can note that if red
inc  is a convex potential of 
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symmetry. The total derivative of the second Piola-Kirchhoff stress tensor is given by  
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The partial derivatives of (B.2) result in 
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resulting from the total derivative of the residual (A.4). The linear system (B.5) can be presented in 
a convenient compact form: 
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One can note that from equation (B.6), the derivative 
1 1n n+ +

¶ ¶xr  is the Jacobian matrix previ-

ously defined in equation (A.6). Finally, the partial derivatives of the set 
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