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Abstract 
Due to their robustness in handling the inherent singularity diffi-
culties associated with crack analysis, mesh-reduction methods 
present an avalanche of formulations in the literature which, some-
times, entails modifications to their conventional/standard forms 
for better results. Although such formulations provide a pool of 
alternative choices to the analyst, increase in their number requires 
some relative assessment between them in order to guarantee opti-
mum choice of analysis tool. The present study assesses the ap-
plicability and relative performance of three such mesh-reduction 
methods, namely the radial basis function (RBF) method, the 
boundary element method (BEM), and the method of fundamental 
solution (MFS) for mode III crack analysis. In order to have a 
common ground for performance comparison, these methods are, 
first, tested in their most basic forms and simplest conventional 
formulations possible. Failure of some of them to provide reliable 
results calls for some enrichments. Yet, unless where necessary, 
efforts are made to ensure that unnecessary computationally expen-
sive formulations are avoided. Consequently, the BEM formulation 
is not altered in any way, and modifications to both the RBF and 
MFS are limited to enrichment by the addition of, at most, one 
singular term and/or the domain-decomposition technique. Verifi-
cation is achieved using the literature results and/or those obtained 
by FEM in this study. Summary of the relative advantages and 
limitations of the methods for mode III crack analysis is given to 
serve as a yard-stick based on which the choice of one over the 
others may be influenced. 
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1 INTRODUCTION 

Analysis of cracks in solids is an essential aspect useful for various applications aimed at designing 
parts against fracture and for life prediction of engineering components. The stress field in the vicin-
ity of the crack tip governs the crack growth and, hence, behavior of the crack-tip-field stresses is 
very essential in fracture mechanics. A crack is made of disjoined upper and lower faces, where the 
crack front is the common joint between the crack faces. Once subjected to externally applied loads 
(remote or at the crack surfaces), a cracked solid exhibits any of the three major fracture modes 
(Mode I, Mode II or Mode III) or their combinations depending on the loading pattern. As shown in 
Fig. 1, a typical case of mode III is a consequence of subjecting a cracked body to an anti-plane 
shear τ0. This loading condition is also referred to as the tearing mode. In order to have an idea 
about the extent of stress singularity at a crack tip, the stress intensity factor (SIF) is defined (Ir-
win, 1958). This parameter provides a very useful information that helps in characterizing the state 
of stress near the crack tip due to remote loading. 
 

߬0  

߬0  

ߠ  

 

Figure 1: Illustration of mode III loading condition in an arbitrary shaped cracked body. 

 
There exists a number of analytical solutions for mode III crack problems. Some of these include 

use of Westergaard stress functions by Sih (1965), the Fourier transform and Fourier series by 
(Zhang, 1987; Zhang, 1988; Zhang, 1989; Ma, 1988; Ma, 1989; Ma and Zhang, 1991), perturbation 
procedures by (Chiang, 1987) and the technique for Hilbert problems and Cauchy integrals to solve 
the problem formulated by representing the internal stresses and the normal displacement by com-
plex holomorphic functions by (Vroonhoven, 1995). 

The inapplicability of analytical methods for fracture problems with complex shapes and/or 
loading conditions necessitates the adoption of numerical techniques, such as the FEM or its modi-
fied forms, for analysis. Example of FEM variants for crack analysis under anti-plane shear include 
the fractal-like finite element method (Treifi et al., 2009). Leung and Tsang (2000) presented an 
analysis of mode III crack problem by two-level FEM with finite number of layers. The method does 
not require the use of any special singular element, and the SIF is obtainable directly from some 
unknown coefficient of the displacement function once the solution is achieved. A weak-form differ-
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ential quadrature element method, which is similar to the FEM in principle, has been used by Liao 
et al. (2015) for the analysis of mode III cracks’ SIF. Two regions are defined in the approach: A 
near field circular complementary energy region with stresses as the variables, and a far field poten-
tial energy region with displacements as the variables. Coarse mesh sizes are sufficient to achieve 
the desired accuracy due to the fact that the method employs mathematical discretization rather 
than geometrical discretization.  

FEM requires both the domain and boundary of the problem to be meshed, and the denser the 
mesh, the more accurate the solution is (except at points of stress singularities, such as r = 0 in Fig. 
1) which results in high computational and memory demand. In addition, the need for re-meshing in 
FEM is another aspect considered to be time-consuming and bound to result in some errors. One of 
the best ways to avoid such computational demand and complexities associated with the FEM is 
the use of mesh-reduction techniques. Consequently, quite a number of such methods applied for 
fracture analysis are available. Such techniques, including the BEM (Brebbia, 1989) and/or its vari-
ances, are very popular techniques with a record of success for mode III crack problems.  For exam-
ple, Xanthis et al. (1981) presented a form of the boundary integral equation method, and provided 
a number of approaches for computing SIF for cracked bodies governed by mode III condition. Ap-
plication of the boundary integral equation method has been made by Paulino et al. (1993) for an 
arbitrary shaped body containing a curved crack under mode III loading condition. Discretization of 
the cut-out boundary was eliminated by incorporating the effect of the crack on the stress field in 
an augmented kernel. Accurate closed form solution of the SIF at each crack tip is obtained by con-
ducting asymptotic analysis. Another formulation of integral equation method for mode III crack 
problems capable of tackling both smooth and kinked cracks has been reported by Liu and Altiero 
(1992). Singular integral equation method have also been applied to study Zener-Stroh crack prob-
lems loaded in anti-plane mode by Chen and Lin (2007).  

The boundary element alternating method has been applied successfully for either a single or 
multiple mode III cracks by Ting et al. (1995). This work is a modified form of that reported by 
Ting et al. (1994) where, in conjunction with the analytical solution for a single crack, application of 
the Schwarz-Neumann alternating method was made to analyze an infinite sheet with multiple 
cracks under mode III loading. Mews and Kuhn (1988) presented application of the modified BEM 
proposed by Snyder (1973) which eliminates the need for any crack discretization and involves the 
use of Green’s function rather than the fundamental solution. Use of the asymptotic displacement 
field at the crack tip is made for the determination of the SIF. A similar idea was used by Ker-
manidis and Mavrothanasis (1995) to obtain mode III SIF for cracked torsionally loaded axisym-
metric bodies. As in the preceding reference, no necessity of discretizing traction-free crack surface 
exists and, upon comparing with FEM and some literature results, efficiency of the approach is es-
tablished. Analysis of mode III cracks using a dual BEM, consisting of both displacement and trac-
tion boundary integral equations, is presented by Wu (2009). The method has an obvious advantage 
of having to work with a single region formulation, with the displacement equation applied at the 
outer boundary discretized with continuous quadratic elements while the traction equation is ap-
plied to only one of the crack surfaces discretized with discontinuous quadratic elements. Accurate 
results of the SIFs are obtained using the discontinuous quarter point method. Prior to that, dual 
BEM has been applied to a torsion problem of a cracked bar, which can also be seen as mode III 
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cracks, by Chen et al. (1995) and Chen and Chen (2000). BEM and/or its variants have also proved 
successful when applied to cracked anisotropic or non-homogeneous bodies under anti-plane shear 
mode such as in the work reported by Ang (1999) and Sun et al. (2003). 

A further reduction in the computational efforts can be realized with the use of a sub-class of 
mesh-reduction methods, the so-called truly meshless methods. Use of element-based discretization 
is completely eliminated in these methods. A popular approach under this category is the colloca-
tion method whose application is well established for mode III fracture. For example, displacement 
functions for crack problems in finite body under anti-plane shear loading have been proposed by 
Yuanhan (1992) and Yuanhan (1993) for edge and internal cracks, respectively. In both cases, cal-
culations of the SIFs have been achieved using the boundary collocation method which yields accu-
rate results that compares favorably with those from other sources. Another successful application 
of the same method to a cracked finite orthotropic plate loaded in anti-plane mode is reported by 
Wang et al. (1992).  

Another technique by collocation using the fundamental solution, popularly known as the meth-
od of fundamental solution (MFS) (Kupradze and Aleksidze, 1964), is devised to circumvent the 
integration needed along the boundary in BEM. The MFS does not require any integration even at 
the boundary as is the case with BEM. The MFS, however, requires that some virtual boundary be 
defined over which the source points are placed in order to avoid singularity in the solution. The 
offset distance to the virtual boundary becomes an issue when MFS is applied to solve problems 
governed by some PDEs. The radial basis function (RBF) also referred to as Kansa method (Kansa, 
1990a; Kansa, 1990b), as another meshless method, presents itself with some appealing characteris-
tics too. First, no fundamental solution is needed as a priori when using the method. Only some 
suitable RBFs need to be chosen and the problem is solved by collocating over some randomly dis-
tributed nodes within the domains and over the boundary. The requirement of the RBF, however, is 
that some parameter called the shape function needs to be calibrated for accurate results. 

As truly meshless methods, collocation using RBF and/or MFS is very famous and less complex 
making them handy in solving different engineering problems. A number of studies on the applica-
tions of MFS to singular problems can be found in the literature (Johnston et al., 1987; Karageor-
ghis, 1992; Poullikkas, 1998). Based on the domain decomposition technique, Alves and Leitão 
(2006) applied an enriched MFS to the torsion of cracked components – another form of mode III 
cracks. This later work demonstrates the inadequacy of the conventional/standard MFS technique 
to capture the singularity at the crack tip, and addressed the shortcoming by adding extra term(s) 
to the conventional MFS formulation. However, the work does not provide any discussion on SIF 
calculations and the domain considered is restricted to circular shape.  

Enrichment of RBF methods have also proved useful in capturing the singularity inherent in 
some problems with discontinuous boundary conditions. This technique has been used by Gu et al. 
(2011) for analysis of mode I cracks. Although problems having the same governing equation and 
form of singularity as the mode III crack problem has been analyzed using enriched RBF method 
(Bernal et al., 2009; Bernal and Kindelan, 2009; Wang et al., 2010), yet, extensive study using such 
approach has not been reported for mode III cracks.  

Use of other meshless methods and nonconventional FEM formulations for general fracture 
problems (including mixed-mode behavior) is also popular in the literature (See, for example, Krysl 
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and Belytshcko, 1999; Dolbow et al., 2000). Although minimum of two or all the three fracture 
modes are involved in such generic analysis, but the methods allow extracting individual SIF for 
each mode, and hence are capable of tackling mode III crack problems. 

The large number of mesh-reduction formulations existing in the literature, which provide a 
pool of alternative choices to the analyst, hints on the need for relative assessment between them in 
order to guarantee optimum choice of analysis tool. Additionally, it is obvious from the literature 
that works based on BEM for mode III crack analysis are more abundant than those utilizing RBF 
and MFS for the same problem. Consequently, the present work chooses to formulate and assesses 
the applicability and relative performance of RBF, BEM, and MFS for mode III crack analysis. 
Unless where necessary, efforts are made to ensure that unnecessary computationally expensive 
formulations are avoided in order to have a common ground for performance comparison of these 
methods. Where necessary, failure of some of them to provide reliable results is resolved by some 
enrichments and/or domain-decomposition. Consequently, while both RBF and MFS are truly 
meshless requiring no further discussion on the choice of element type, the BEM (as a mesh-
reduction method) is formulated in such a simplest and basic form possible that does not involve 
the use of any singular or discontinuous quarter-point boundary elements at the crack tip as typi-
cally done to improve accuracy in other BEM formulations for crack analysis (Blandford, 1981; 
Martínez and Domínguez, 1984; Sáez et al., 1995). Literature results and/or those obtained by FEM 
in this study are used for verifying those of the three mesh-reduction methods assessed. 
 
2 GOVERNING EQUATION OF MODE III CRACK PROBLEMS 

Due to the fact that the displacement components u and v  vanishes in case of crack problems asso-
ciated with anti-plane deformation, the general elasticity equation (in the absence of body forces) 
given by Eq. (1) reduces to Eq. (2).  
 

. ߪ ൌ 0 (1)
 

∂τ௫௭
ݔ߲


∂τ௬௭
ݕ߲

ൌ 0 (2)
 

The only non-vanishing displacement is ݓሺݔ,  ሻ. As a result, the non-vanishing strains and theݕ
corresponding stresses are given by Eqs. (3) and (4), respectively. 
 

ε௫௭ ൌ
1
2
		
ݓ߲
ݔ߲

; ε௬௭ ൌ
1
2
ݓ߲
ݕ߲

 (3)
 

τ௫௭ ൌ ;ε௫௭ߤ2 τ௬௭ ൌ ε௬௭ (4)ߤ2
 

Where ߤ is the shear modulus. 
Using Eqs. (3) and (4) in Eq. (2) yields Eq. (5) as the governing equation for mode III crack 

problems subject to some boundary condition(s) defending on the particular problem. Eq. (5) signi-
fies that w is a harmonic function. 
 

ݓଶ ൌ 0 (5)
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3 SINGULAR ANALYTICAL SOLUTION FOR A CRACK IN AN INFINITELY MODE III LOADED 

BODY 

Consider the case of a symmetrically cracked body under anti-plane shear mode as shown in Fig. 2. 
The analytical solution of the stress intensity factor for this standard case has been established as 
ܭ ൌ ߬√ܽߨ. 
 

 

Figure 2: Symmetrically mode III loaded crack in an infinite elastic body. 

 
Solution by the Westergaard function method (Westergaard, 1939; Sih, 1966) yields the near-

field stresses and the anti-plane displacement given in Eqs. (6) and (7), respectively. The stress in-
tensity factor can be calculated using Eq. (8). 
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݊݅ݏ
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ݓ ൌ ඨ
ݎ2
ߨ
		
ூூூܭ
ߤ

݊݅ݏ
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2
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ூூூܭ ൌ lim
→

ݎߨ2√ ߬௬௭ሺߠ ൌ 0ሻ (8) 
 

It will be interesting to note that the above near-field stress expressions have inverse square root 
singularity at the crack tip, and that the near-tip stress and displacement fields neither depend on 
the loading nor on the geometry of the cracked body. In other words, the near-tip stress and dis-
placement field distributions are dictated by only r and ߠ (and this holds true even for cases with 
finite geometries) while the field strengths are controlled by KIII. 

The general displacement field can also be obtained using the Williams’ eigenfunction expansion 
(Williams, 1952; Williams, 1957). For Mode III cracks, this can be written in the form given by Eq. 
(9), and the corresponding stress fields are given by Eq. (10) which shows that the singular stresses 

ܽ ܽ ݔ

ݕ
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manifest only in the first terms of the expansions. An are some constants that depend on the loading 
and boundary conditions. 
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4 ANALYSIS USING MESH-REDUCTION METHODS 

The famous analytical methods described in Sect. 3 for elastic crack problems are only adoptable to 
provide solutions for infinite bodies with symmetric configuration subjected to anti-plane shear. 
Hence, their applications to unsymmetrical cases and/or finite elastic bodies needs a different ap-
proach. Fortunately, mesh-reduction numerical methods become handy and more flexible in solving 
such cases. However, not all the mesh-reduction methods can capture the inherent singularity be-
havior at the crack-tip as does the analytical methods. For instance, of the three mesh-reduction 
methods proposed to solve the problem in this study, the standard BEM captures the singularity 
most satisfactorily. The unenriched MFS somehow does the same but with large error margin, while 
the unenriched RBF cannot handle the singular behavior at all. Consequently, enriched forms of 
both RBF and MFS are formulated using the leading terms of the singular analytical solutions while 
the traditional form of the BEM is retained due to the already mentioned reason about its capabil-
ity to handle the singularity behavior. 

The formulations needed to solve the problem are explained here using a general elliptic partial 
differential equation, given by Eq. (11), with the domain operator ु on the dependant variable w.  
The general boundary condition Γ acted upon by the boundary operator ी is subdivided into  1 
and  2 corresponding to the far boundary and the crack faces/boundary, respectively.  
 

ݓ	ु ൌ 0 in Ω (11a)
 

ीభ	ݓ ൌ ݂ on Γଵ (11b)
 

ीమ	ݓ ൌ ݃  on Γଶ (11c)
 

Where f and g are continuous functions of the position variable. 
All the three methods presented in this work are based on some radial distance, ݎ ൌ

ඥሺݔ െ ሻଶݔ  ሺݕ െ ݔ̅ ሻଶ, between a general pointݕ ൌ ሺݔ, ݔ̅ ሻ and some ith pointݕ ൌ ሺݔ,  .ሻݕ
As will be seen in the preliminary performance check on the three mesh-reduction methods 

studied (Sect. 5), some geometrical crack configurations call for the need to use the domain-
decomposition technique for more convenience and/or accuracy. Depending on the crack configura-
tion, this could be achieved by subdividing the original domain Ω into a number of sub-domains; 
two in case of single crack. The crack is made to pass through the common internal boundary of the 
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two subdomains. As shown in Fig. 3, the far boundary and the crack face/boundary for the ith sub-
domain Ωi are denoted by  1,i and  2,i, respectively. The interface boundary (common between 
the two sub-domains) is denoted as  i. 
 

 

Figure 3: Generic idea of domain-decomposition approach for crack problems. 

 
4.1 RBF and its Application for Mode III Crack Analysis 

To use a conventional RBF (Kansa, 1990a; Kansa, 1990b; Kansa, 1992), the system described in 
Eq. (11) is represented by randomly distributed nodes Nd and Nb, respectively, on the domain   and 
on the boundary Γ as shown in Fig. 4. This forms a set of N points (ܰ ൌ ௗܰ  ܰ). In this study, 
the rest of the formulations are given in the light of the use of single-domain or domain-
decomposition approaches. 
 

 

Figure 4: Domain and boundary nodal distribution in RBF. 

 
4.1.1 Single-Domain RBF 

For a conventional formulation and assuming a suitable RBF centered at a given number of points, 
the solution to Eq. (11) can be approximated using the direct collocation method as  
 

ሻݔሺݓ ൌߙ

ே

ୀଵ

߶൫ฮݔ െ  ฮ൯ (12)ݔ
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Where ߶ is the radial basis function centered at ݔ and ฮݔ െ  ฮ is the Euclidean norm. Theݔ
unknown coefficients ' s  are determined by solving the system of N linear equations in Eq. (13) 
formed by applying the operators ु and ी to the approximation given by Eq. (12) at N selected 
points; ु is applied to Nd  nodes, ी is applied to boundary nodes on  1 and to the crack boundary 
nodes on  2. Throughout this work, use is made of the multiquadric RBF, ߶ ൌ ଶݎ√  ܿଶ  where r 
is defined earlier as the radial distance defined between two points and c is a shape parameter that 
needs to be calibrated to fine-tune the solution accuracy. 
 

൦

ु	߶൫ฮݔభ
 െ ฮ൯ݔ

ीభ߶൫ฮݔభ
 െ ฮ൯ݔ
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 െ ฮ൯ݔ

൪ ሾߙሿ ൌ 

0
݂ሺݔభ

 ሻ

݃ሺݔమ
 ሻ
 (13)

 
4.1.2 Domain-Decomposition Using RBF 

Some geometrical crack configurations calls for the need of using the domain-decomposition tech-
nique. In this work, the domain-decomposition formulation assumes the original domain Ω to be 
sub-divided into two sub-domains Ω1 and Ω2 with assumed solutions ݓሾଵሿ and ݓሾଶሿ, respectively. 
The procedure described in Sect. 4.1.1 is then extended to handle such decomposed domains. This 
requires the additional conditions, ݓሾଵሿ ൌ ሾଵሿݓሾଶሿ and ߲ݓ ൌ ߲ݓሾଶሿ, to be satisfied in order to en-
sure compatibility or continuity at the common boundary between the two subdomains. Conse-
quently, the system of equations given by Eq. (13) for the single-domain RBF formulation is modi-
fied to yield Eq. (14) for the domain-decomposition approach.  
 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ु	߶

ሾଵሿ 								 0
		0 												ु ߶ሾଶሿ

ीభ,భ߶
ሾଵሿ 0

0 ीభ,మ߶
ሾଶሿ

ीమ,భ߶
ሾଵሿ

0
߶ሾଵሿห



߲߶ሾଵሿห


0
ीమ,మ߶

ሾଶሿ

െ߶ሾଶሿห


െ߲߶ሾଶሿห
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ߙ
ሾଵሿ

ሾଶሿߙ
൨ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
݂ሾଵሿ

݂ሾଶሿ

݃ሾଵሿ

݃ሾଶሿ

0
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (14)

 
4.2 BEM and its Application for Mode III Crack Analysis 

Boundary element method (BEM) (Brebbia, 1989) is a mesh-reduction technique where the domain 
integrals are converted to boundary integrals and, therefore, requires boundary-only discretization. 
In order to achieve that, fundamental solution of the problem is needed. Since the BEM does not 
require domain discretization, only the boundaries will discretized as shown in Fig. 5. The crack 
surface is one of the boundaries that needs to be discretised. 
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Figure 5: Discretization in BEM. 

 
4.2.1 Single-Domain BEM 

Applying the concept of weighted residual technique to Eq. (11a), noting that the operator ु ≡  ,ଶ
and integrating by parts twice, results in Eq. (15). 
 

න ቀଶݓ൫̅ݔ, ሻ݀Ωݔሺݓ൯ቁݔ̅
	

ஐ
 නݍሺݔሻݓ∗൫̅ݔ, ൯݀Γݔ̅

	


െ නݓሺݔሻݍ∗൫̅ݔ, ൯݀Γݔ̅


ൌ 0 (15) 

 

The weighting function, w*, in Eq. (15) is selected to be the fundamental solution which yields 
the domain integral equations given by Eq. (16). 
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Dividing the boundary into ݊ constant-type elements with w and q evaluated at mid-points 
ݔ) ݕ , ) over each boundary element, the boundary integral equations are obtained by taking xi to 
the boundary. This results in the boundary integral equations given by Eq. (18).  
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For constant-element type, ݓ and ݍ are nodal values at mid-points, ̅ݔ , of the ith element, 
and ̅ݔ are the coordinates of any point within the jth boundary element. Applying Eq. (18) at 
ݔ̅ 	ሺ݅ ൌ 1, 2,⋯ , ݊ሻ

 on both the crack and other boundaries, the boundary element equations are 
obtained as given by Eq. (19). 
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Where 
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ܪ ൌ න ,ݔ൫̅∗ݍ ݔ̅ ൯݀Γ
	

ೕ
; ܩ			 ൌ න ,ݔ൫̅∗ݓ ݔ̅ ൯݀Γ

	

ೕ
; ݅, ݆ ൌ 1, 2,⋯ , ݊																			݅ ് ݆  

 

The singular elements (ܪ and ܩ) can be computed using Eq. (20). 
 

ܪ ൌܪ



ୀଵ
ஷ

ൌ
1
2
; ܩ ൌ

ܮ

ߨ
݈݊ ൬

2
ܮ
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Where Lj is the length of the jth element. 
Once the system of algebraic equations given by Eq. (19) are solved for the boundary nodal val-

ues ݓ and ݍ, the solution at any domain point ̅ݔௗ
  and its derivatives can be obtained by Eq. (21) 

and Eq. (22), respectively.  
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ݔ߲
 ൫̅ݔ

, ௗݔ̅
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ୀଵ
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4.2.2 Domain-Decomposition Using BEM 

The crack problem can also be handled using the BEM domain-decomposition technique where each 
subdomain is treated separately by applying the BEM in turn. Compatibility of the unknowns (w 
and q) is enforced at the interface between the two sub-domains. The resulting set of equations are 
solved to obtain the unknowns on the boundaries, as well as on the interface between them. 
Let, 
nb1 = the number of boundary elements (hence, nodes) on Ω1 
nb2 = the number of boundary elements (hence, nodes) on Ω2 
ni = the number of interface elements (hence, nodes) along the interface between the two subdo-
mains. 

This implies that the total number of unknowns in the system = nb1+nb2+2ni (since both the 
heads and the fluxes are unknowns along the interface elements). To get the required number of 
equations needed to solve for the unknowns, the BEM equations given by Eq. (19) are applied on 
the boundaries of each of the subdomains (Eq. (23)), in turn, resulting into nb1+nb2 equations. In 
order to obtain the remaining 2ni equations, compatibility conditions, given by Eq. 24, are satisfied 
at the interface. 
 

൫ܪݓ൯
భ,భ

ൌ ൫ܩݍ൯
భ,భ

; ൫ܪݓ൯
భ,మ

ൌ ൫ܩݍ൯
భ,మ

 (23a)
 

൫ܪݓ൯
మ,భ

ൌ ൫ܩݍ൯
మ,భ

; ൫ܪݓ൯
మ,మ

ൌ ൫ܩݍ൯
మ,మ

 (23b)
 

ሺݓሻ
ሾଵሿ ൌ ሺݓሻ

ሾଶሿ; ሺݍሻ
ሾଵሿ ൌ െሺݍሻ

ሾଶሿ (24)
 

The system of equations given by Eq. (23) and Eq. (24) is solved for all the boundary and inter-
face unknowns in terms of which the domain solution is obtained. 
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4.3 MFS and its Application for Mode III Crack Analysis 

The MFS combines some interesting features and advantages of both the RBF and BEM. First, 
similar to the BEM, its use eliminates the need for domain discretization; only the boundary of the 
problem needs to be discretized. Hence, it also requires the use of the fundamental solution w* 
which satisfies the governing equation everywhere in the domain, except at the boundary. Second, 
the integration needed in BEM is avoided and, instead of using elements on the boundary as re-
quired in the BEM, some distributed boundary nodes similar to the RBF are used. Again, as in the 
RBF, the MFS solution is approximated as a linear combination of the fundamental solution cen-
tered at some source points. But, due to the singularity behavior of w* at the source points, the 
MFS does not make use of the boundary points as the source points. Instead, a set of points on a 
virtual boundary as shown in Fig. 6 are used. These virtual points serve as the centers of the indi-
vidual basis functions, the fundamental solutions, used in the approximation. 
 

 

Figure 6: Source and boundary nodal distribution in MFS. 

 
4.3.1 Single-Domain MFS 

With w* centered at a given number of source points, the solution to Eq. (11) is approximated as 
follows.  
 

ሻݔሺݓ ൌߙ



ୀଵ

ݔ൫ฮ∗ݓ െ  ฮ൯ (25)ݏݔ

 

Where ߙ are coefficients to be determined and ݏݔ are the off-boundary points (the source 
points) located at a distance d normal to the original boundary. The ݊ coefficients can be deter-
mined by satisfying the boundary conditions at ݊ boundary points on the crack  2 and the rest of 
the boundary  1 as given by Eq. (26). 
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4.3.2 Domain-Decomposition Using MFS 

The procedure for MFS based on the domain-decomposition technique is similar to that applied to 
the RBF-based domain-decomposition in Sect. 4.1.2 by subdividing the original domain Ω into two 
sub-domains Ω1 and Ω2, compatibility condition (functions of the assumed solution in Eq. (25)) is 
enforced at the interface common to the two sub-domains thus ݓሾଵሿ ൌ ሾଵሿݓሾଶሿ and ߲ݓ ൌ ߲ݓሾଶሿ. 
Therefore, the system of equations given by Eq. (26) is modified to yield the form given in Eq. (27). 
 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ीభݓ

∗ሾଵሿ 0

0 ीభݓ
∗ሾଶሿ

ीమݓ
∗ሾଵሿ

0
ሾଵሿห∗ݓ



߲ݓ∗ሾଵሿห


0
ीమݓ

∗ሾଶሿ

െݓ∗ሾଶሿห


െ߲ݓ∗ሾଶሿห
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ߙ
ሾଵሿ

ሾଶሿߙ
൨ ൌ

ۏ
ێ
ێ
ێ
ێ
݂ۍ

ሾଵሿ

݂ሾଶሿ

݃
݃
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 (27)

 
5 PRELIMINARY PERFORMANCE CHECK AND SUGGESTED ENRICHMENTS 

Some preliminary simulation runs for mode III loaded cracks were performed to verify the applica-
bility and performance of the aforementioned formulations. As will be seen in the results section 
(Sect. 7), the outcome indicates that while BEM is successful in capturing the near-field solution 
behavior, the same cannot be said in the case of RBF and MFS. Due to this unsatisfactory behavior 
of the two latter methods at the crack-tip field, the present work utilizes the singular analytical 
solution of Eq. (9) to enrich them. This choice is made due to the fact that Eq. (9) captures the 
near-field singularity behavior. Representing the nth enrichment term as the basis function given by 
Eq. (28), the RBF and MFS formulations given in Sect. 4 are modified to yield enriched RBF and 
MFS referred to, here, as e-RBF and e-MFS respectively. 
 

߰ ൌ ିݎ
ଵ
ଶ ݊݅ݏ ൬݊ െ

1
2
൰(28) ߠ

 

Another factor considered in the preliminary performance check is the need or otherwise of the 
use of domain-decomposition approach for each of the three methods. Again, it was found that the 
BEM works fine using the single-domain approach. This was made possible by defining the two 
crack faces separated at a very small distance of 10ିସ units (approximately zero). On the other 
hand, it was noticed that the use of domain-decomposition for both the RBF/e-RBF and MFS/e-
MFS was necessary in order to yield satisfactory results. 
 
5.1 e-RBF Formulation 

Due to the inefficiency of Eqs. (13) and (14) to capture the singularity at the crack tip, an enrich-
ment is proposed to the assumed approximate solution. Hence, Eq. (29) is proposed as a modified 
form of Eq. (12), which involves addition of Ns singular terms as functions of the analytical solution 
in the vicinity of the crack tip (cf. Bernal et al., 2009; Bernal and Kindelan, 2009; Wang et al., 
2010). In order to mimic the analytical solution, the function ߰ is chosen to be centered at the crack 
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tip ݔ, and the system of algebraic equations given by Eq. (30) for the single-domain approach is 
ultimately generated via the collocation procedure and taking ௌܰ ൌ 1 (i.e. addition of one singular 
term). This makes it possible to solve for the unknowns ߙ and ߚ.  
 

ሻݔሺݓ ൌߙ

ே

ୀଵ

߶൫ฮݔ െ ฮ൯ݔ ߚ

ேೄ

ୀଵ

߰ሺ‖ݔ െ  ‖ሻ (29)ݔ

 

൦

ु	߶൫ฮݔభ
 െ ฮ൯ݔ ु	߰ଵ൫ฮݔభ

 െ ฮ൯ݔ

ीభ߶൫ฮݔభ
 െ ฮ൯ݔ ीభ߰ଵ൫ฮݔభ

 െ ฮ൯ݔ

ीమ߶൫ฮݔమ
 െ ฮ൯ݔ ीమ߰ଵ൫ฮݔమ

 െ ฮ൯ݔ

൪ ቂ
ߙ
ቃߚ ൌ 

0
݂ሺݔభ

 ሻ

݃ሺݔమ
 ሻ
 (30) 

 

The e-RBF formulation based on domain-decomposition can be written in the form given by 
Eq. (31). 
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5.2 e-MFS Formulation 

Similar to the case with RBF, Eqs. (26) and (27) for the MFS formulation cannot capture the sin-
gularity at the crack tip, and enrichment given in Eq. (32) is proposed to the assumed approximate 
solution. It also involves addition of Ns singular terms as functions of the analytical solution ߰ (cf. 
Alves and Leitão, 2006) centered at the crack tip ݔ. Taking ௌܰ ൌ 1 (i.e. addition of one singular 
term), and collocating over the boundary points generates the system of algebraic equations given 
by Eq. (33), for the single-domain approach, which is solved for the unknowns ߙ and ߚ. 
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The system of equations given by Eq. (33) is modified to yield Eq. (34) for the domain-
decomposition e-MFS. 
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6 COMPUTATION OF SIF 

Results of the crack-tip stress analysis using the BEM formulation reported in this work are ob-
tained by, first, computing the J-integral of the problem and, subsequently, using it to evaluate the 
SIF. However, the e-RBF and e-MFS have an advantage of allowing the SIF to be obtained auto-
matically as part of the solution. In all the analysis carried out in the present work, the enrichments 
in these equations are limited to addition of one singular term each and, hence, ௌܰ ൌ 1. This choice 
is valid due to the fact that the singular stresses manifest only in the first terms of the expansions 
in Eq. (10). As a result, the last term in each of the expansions of w in Eqs. (29) and (32), respec-

tively, for the e-RBF and e-MFS formulations is ߚଵ√ݎ	݊݅ݏ ቀ
ఏ

ଶ
ቁ. Comparing these enriched equations 

in the vicinity of the crack tip (ݎ → 0) with Eq. (7), it can be deduced that ߚଵ ൌ ඥ2 ⁄ߨ 		

ఓ

. This 

allows automatic solution of the SIF as one of the unknown constants solved for in the e-RBF and 
e-MFS. 
 
7 NUMERICAL RESULTS 

Analysis of mode III cracks is performed to study the applicability and performance of the three 
mesh-reduction methods presented in this work. Depending on the method, position of the crack 
may call for the use of single-domain or domain-decomposition approaches. In all cases, unit plate 
width is used and the SIF is non-dimensionalized with respect to ܭ (See Sect. 3).  

The results are generated after a series of parametric analysis for different configurations having 
different dimensions. Hence, for the sake of brevity, information about the number of elements 
(hence the number of degrees of freedom) used for the discretization of each of the mesh-reduction 
methods is reported in terms of the grid spacing. This makes it possible, if interested, for one to 
arrive at the number of elements used for all the methods for any given dimensions. Free triangular 
element type is used with a maximum size of 0.005 fixed for all the cases solved using the FEM. 
However, a typical example about the the number of elements for a case with a/ܹ ൌ 0.5 is reported 
in each of the cracked geometry presented. 
 
7.1 Plate with Central Crack 

The rectangular plate shown in Fig. 7(a) is analyzed using the BEM and the two enriched methods 
(e-MFS and e-RBF). This case can represent either an internal central crack in a plate of dimen-
sions 2ܹൈ2ܪ or a central edge crack in a plate whose dimensions are ܹൈ2ܪ (as shown in the fig-
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ure). Due to the symmetry of the problem, it doesn’t necessitate the use of domain-decomposition 
technique. Hence, half or quarter of the plate is modeled as shown in Fig. 7(b) which corresponds to 
the case of central edge crack or central internal crack, respectively. Typical discretizations for the 
three mesh-reduction methods applied to this problem are shown in Fig. 8. 

Figs. 9 to 11 show typical predictions by the RBF/e-RBF, BEM and MFS/e-MFS. Evidence is 
shown on the failure of conventional RBF and MFS to model the crack-tip field satisfactory (Figs. 
9(a) and 11(a)). This issue is resolved with the use of e-RBF and e-MFS as seen in Figs. 9(b) and 
11(b). However, as shown in Fig. 10, the standard BEM has interestingly modeled the crack-tip 
field without the necessity of enrichment. Both RBF/e-RBF and MFS/e-MFS provide closed-form 
solution, each, of the displacement ݓ which is valid for both the domain and boundary of the prob-
lem. On the other hand, as the name implies, the boundary element method (BEM) provides a 
boundary solution at discrete nodes (shown as dots in Fig. 10(a)) at the center of the constant-type 
boundary elements which are used to obtain the closed-form solution of the displacement ݓ (See 
Eq. (21)) that is valid within the domain (shown as a surface in Fig. 10(a)). Although not required, 
but the two sets of the BEM results (boundary and domain) are interpolated to yield the overall 
solution which enables clearer view shown in Fig. 10(b) of the successful prediction of the crack-tip 
field solution by the BEM. 

SIF results achieved for different crack sizes for a modeled domain of unit square are reported in 
Table 1 along with other literature results to demonstrate the reliability of the presented methods. 
Acceptable results are obtained using regular e-RBF and e-MFS grid distributions, where a mini-
mum grid spacing of 1/60	is adopted for both the two methods. The off-set distance of 7.65ൈ10ିଶ 
for the source points in the e-MFS is used, while choosing the shape parameter c in the multiquad-
ric RBF within ሺ9.2 േ .05ሻൈ10ିଶ is found to be satisfactory. The BEM discretization consists of a 
minimum grid spacing of 1/600 and 1/200 on the crack-containing edge and the rest of the edges, 
respectively. For a typical case with ܽ/ܹ ൌ 0.5, the mentioned grid specifications result in 3,841, 
241 and 1,201 degrees of freedom for the e-RBF, e-MFS and BEM, respectively, compared to 4,629 
degrees of freedom used in FEM for the same case. 
 

 
 

(a) (b) 

Figure 7: Plate with central crack: (a) Full model (b) Half model and boundary conditions due to symmetry. 
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(a) Discretization using RBF/e-RBF (b) Discretization using standard BEM 

(c) Discretization using MFS/e-MFS 

Figure 8: Half model of a square plate with central edge crack. 

 

(a) (b) 

Figure 9: Typical solution for a cracked plate: domain of unit square modeled using (a) RBF and (b) e-RBF. 
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(a) (b) 

Figure 10: Typical result for a cracked plate: domain of unit square modeled using standard BEM showing  

(a) boundary (dots) and domain (surface) solutions (b) Overall solution. 

 
 

 ഥூூூܭ
ܽ/ܹ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Present 
e-RBF 1.0028 1.0166 1.0401 1.0757 1.1278 1.2087 1.3362 1.5696 2.1246 
BEM 1.0026 1.0167 1.0404 1.0767 1.1299 1.2099 1.3368 1.5646 2.1101 
e-MFS 1.0035 1.0176 1.0411 1.0771 1.1305 1.2105 1.3376 1.5660 2.1131 

           

Liao et al. (2015) 1.0043 1.0176 1.0411 1.0771 1.1305 1.2105 1.3376 1.5660 2.1137 
Sun et al. (2003) 1.001 1.016 1.040 1.077 1.132 1.213 1.346 - - 
Yuanhan (1992) 1.0004 1.0170 1.0410 1.0771 1.1305 1.2105 1.3377 1.5648 2.0679 
Murakami (1987) 1.0041 1.0170 1.0398 1.0753 1.1284 1.2085 1.3360 1.5650 2.1133 

Table 1: SIF results for plate with central crack. 

 
 

  

(a) (b) 

Figure 11: Typical solution for a cracked plate: domain of unit square modeled using (a) MFS and (b) e-MFS. 
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7.2 Off-Central Crack 

Since in real life cracks are not always central, another configuration of mode III crack problem is 
considered, the off-central crack shown in Fig. 12. It can be noticed, from the figure, that the prob-
lem doesn’t warrant the use of symmetry line passing through the crack. Hence, its solution require 
more efforts than the previous crack configuration solved. Two possibilities of solution strategy exist 
in such a situation namely, modeling the full domain shown in Fig. 12(a) with the boundary condi-
tions shown in Fig. 12(b) or the use of domain-decomposition which results in subdividing the prob-
lem into a number of subdomains (two in this case) dictated by the number of cracks as shown in 
Fig. 12(c). It is unarguably clear that the first strategy is simpler and less computationally expen-
sive due to lesser number of unknowns and, hence, number of equations needed to be solved. Pre-
liminary simulation runs are conducted to study the feasibility of the first strategy. It is found that 
of the three mesh-reduction methods in this work, only the BEM is able to satisfactorily model such 
problem using the full-model approach: Both the e-RBF and e-MFS fail to achieve reasonable solu-
tions. Consequently, use of domain-decomposition is made in the two latter methods. Typical dis-
cretization schemes for the three methods used in solving the off-central cracks are shown in Fig. 13 
where it is clear that both e-RBF and e-MFS are discretized in such a way suitable for domain-
decomposition while the BEM is discretized to tackle the problem as a single domain. 

Table 2 shows the SIF results achieved for different cases of the off-central crack. It can be seen 
that although the BEM results are obtained using the full/single-domain model, yet the results 
compare favorably with the e-RBF and e-MFS domain-decomposition approaches. The same prob-
lems are modeled using FEM and the results are also presented in the table to serve as a means for 
verifying the predictions of the three mesh-reduction methods presented. In this case, maintaining 
the minimum grid spacing of 1/60 for the e-RBF still works but with a shape parameter c=0.15. 
However, the minimum grid spacing in the case of e-MFS is reduced to 1/100 and the off-set dis-
tance of 0.1 for the source points is used. Minimum grid spacing of 1/300 is used for the BEM dis-
cretization of this problem. The FEM solution for a typical case with ܽ:ܹ ൌ 1: 2 and ݁:ܪ:ܹ ൌ
1: 4: 4 is obtained using a total of 5,922 elements compared to 3,961, 391 and 1,501 degrees of free-
dom used in e-RBF, e-MFS and BEM, respectively, for the same case. 
 

 

(a)                (b)           (c) 

Figure 12: Plate with off-central edge crack: (a) Full model (b) Boundary conditions (c) Domain-decomposition. 
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(a) (b) (c) 

Figure 13: Typical geometry with crack that is not aligned with any line of symmetry  

discretized using (a) e-RBF (b) standard BEM, and (c) e-MFS. 

 

 ܹ:ܪ:݁
ܽ:ܹ 

1 ∶ 1.5 
 

1 ∶ 2 1 ∶ 3 
e-RBF BEM e-MFS FEM e-RBF BEM e-MFS FEM e-RBF BEM e-MFS FEM 

1: 4: 4 1.4203 1.4203 1.4133 1.4192 

 

1.2705 1.2673 1.2671 1.2662 1.1488 1.1504 1.1487 1.1496 

1: 5: 4 1.3403 1.3402 1.3363 1.3392 1.1912 1.1877 1.1881 1.1869 1.0991 1.0923 1.0903 1.0916 

1: 8: 4 1.2855 1.2913 1.2863 1.2906 1.1356 1.1343 1.1344 1.1336 1.0534 1.0544 1.0526 1.0537 

2: 6: 6 1.5474 1.5501 1.5507 1.5477 1.3849 1.3868 1.3850 1.3849 1.2446 1.2406 1.2374 1.2392 

2: 7.5: 6 1.3829 1.3819 1.3788 1.3809 1.2340 1.2297 1.2300 1.2289 1.1212 1.1231 1.1209 1.1222 

2: 12: 6 1.2887 1.2943 1.2893 1.2936 1.1372 1.1377 1.1388 1.1371 1.0497 1.0568 1.0549 1.0562 

5: 12: 12 1.9057 1.9225 1.9343 1.9237 1.6949 1.7127 1.6543 1.7012 1.4869 1.4916 1.4896 1.4923 

5: 15: 12 1.4673 1.4688 1.4674 1.4674 1.3133 1.3124 1.3112 1.3112 1.1937 1.1847 1.1831 1.1837 

5: 24: 12 1.2954 1.2996 1.2947 1.2988 1.1486 1.1437 1.1445 1.1431 1.0551 1.0610 1.0591 1.0604 

Table 2: SIF results for plate with off-central crack. 

 
7.3 Two Parallel Cracks 

As shown in Fig. 14, plate containing two parallel cracks is considered as another case of the mode 
III crack problem. Separated by a distance 2݀, these cracks can represent the case of either two 
internal cracks in a plate of dimensions 2ܹൈ2ܪ (as shown in the figure) or the case of two edge 
cracks on a plate with dimensions ܹൈ2ܪ. In either case, similar to the case of off-central crack 
presented in the previous example, it is necessary to model parts of both the upper and lower faces 



1246     F.M. Mukhtar / Relative Performance of Three Mesh-Reduction Methods in Predicting Mode III Crack-Tip Singularity 

Latin American Journal of Solids and Structures 14 (2017) 1226-1250 

of the cracks since the configuration doesn’t result in the symmetry line (shown in dashed) to pass 
through the crack lines. Consequently, even if half or quarter of the plate is modeled which corre-
sponds to the case of two edge cracks or two internal cracks, respectively, the use of e-RBF and e-
MFS domain-decomposition as shown in Fig. 12(c) is necessary. However, as in the case of the off-
central crack, the BEM is capable of handling the problem without domain-decomposition (See Fig. 
13(b)). 

Results obtained for several cases of the problem based on the three formulated methods are 
shown in Table 3 along with the predictions by FEM for verification. The off-set distance in the e-
MFS for this problem is 0.13 while the shape parameter in the e-RBF is 0.15. Minimum grid spac-
ings of 1/60, 1/210	 and 1/110	 are used for the e-RBF, BEM and e-MFS, respectively. Based on 
the mentioned grid specifications, the degrees of freedom used for a typical case with ܽ:ܹ ൌ 1: 2 
and ݀:ܪ:ܹ ൌ 1: 4: 4 are 3,961, 1,261 and 551 for the e-RBF, e-MFS and BEM, respectively. The 
FEM discretization for the same geometry is achieved using 5,959 elements. 
 

 

(a) (b) 

Figure 14: Plate with two parallel cracks: (a) Full model (b) Quarter model due to symmetry. 

 

 ܹ:ܪ:݀
ܽ:ܹ 

1 ∶ 1.5 
 

1 ∶ 2 1 ∶ 3 
e-RBF BEM e-MFS FEM e-RBF BEM e-MFS FEM e-RBF BEM e-MFS FEM 

1: 2: 4 1.3287 1.3305 1.3269 1.3296 

 

1.1774 1.1782 1.1764 1.1776 1.0823 1.0848 1.0764 1.0843

1: 2.5: 4 1.2471 1.2494 1.2443 1.2489 1.0928 1.0935 1.0914 1.0931 1.0176 1.0197 1.0108 1.0195

1: 4: 4 1.1981 1.2006 1.1933 1.2003 1.0366 1.0371 1.0336 1.0368 0.9753 0.9764 0.9661 0.9762

2: 3: 6 1.4970 1.4976 1.4971 1.4961 1.3353 1.3361 1.3349 1.3351 1.2049 1.2072 1.2017 1.2066

2: 3.75: 6 1.3248 1.3267 1.3230 1.3262 1.1712 1.1721 1.1703 1.1718 1.0796 1.0822 1.0742 1.0819

2: 6: 6 1.2362 1.2384 1.2319 1.2381 1.0755 1.0759 1.0727 1.0757 1.0084 1.0097 1.0010 1.0095

5: 6: 12 1.8980 1.8939 1.9031 1.8867 1.6872 1.6873 1.6867 1.6867 1.4798 1.4768 1.4822 1.4751

5: 7.5: 12 1.4346 1.4359 1.4343 1.4349 1.2781 1.2791 1.2778 1.2785 1.1599 1.1631 1.1564 1.1625

5: 12: 12 1.2633 1.2655 1.2596 1.2652 1.1048 1.1054 1.1025 1.1052 1.0314 1,0330 1.0237 1.0327

Table 3: SIF results for plate with two parallel cracks. 
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7.4 Relative Performance of the Three Mesh-Reduction Methods 

Relative applicability and performance of the three mesh-reduction methods in the present study 
can be assessed based on the foregoing discussion. Summary of the same is given in Table 4 in 
terms of need, or otherwise, of the following: (i) enrichment, (ii) domain-decomposition, (iii) auto-
matic evaluation of SIF alongside the solution, (iv) parameter calibration, (v) availability of funda-
mental solution, and (vi) integration. 
 
 

   
BEM

MFS  RBF 

   Standard e-MFS  Standard e-RBF 

Integration required Yes No No  No No 

Fundamental solution required Yes Yes Yes  No No 

Need for domain discretization No No No  Yes Yes 

Need for parameter calibration No Yes Yes  Yes Yes 

Captures crack-tip singularity Yes No Yes  No Yes 

Enrichment status No No Yes  No Yes 

Modeled with symmetry  Crack-tip field solution  ൈ   ൈ  

  Far-field solution       

Modeled without symmetry Single-domain Crack-tip field solution  ൈ ൈ  ൈ ൈ 

  Far-field solution  ൈ ൈ  ൈ ൈ 

 Domain-decomposition Crack-tip field solution  ൈ   ൈ  

  Far-field solution       

 Provides accurate solution 
ൈ Fails to provide accurate solution 

Table 4: Summary of performance of the three mesh-reduction methods in the benchmarked mode III problems. 

 
8 CONCLUSIONS 

Simulation of mode III cracks has been carried out using three mesh-reduction methods namely, 
RBF, BEM and MFS. Assessment is made on their relative performance for some benchmarked 
problems. Necessity and effect of the enrichment in RBF and MFS (termed e-RBF and e-MFS, 
respectively) by utilizing the localized singular analytical solution and the improvement achieved by 
the use of domain-decomposition over the single-domain approach is examined and discussed. It has 
been found that this enrichment and/or domain-decomposition is not necessary when the BEM is 
adopted. Verification of the results is achieved using the literature results and/or those obtained by 
FEM in this study. Summary of the relative performance of the three methods presented is given in 
a tabular form (Table 4) to show a mapping between the approaches and the extent of successful 
result achievement based on different factors. The table may serve as a useful guide in recommend-
ing, depending on the factor the analyst deems most important for the particular case at hand, the 
optimum of the three approaches and/or their variances when analyzing mode III crack problems. 
Similar study can be carried out for many other cases of mode III problems not considered in the 
present work. 
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