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Abstract 
The thermo-hydro-mechanical problems associated with a poroelas-
tic half-space soil medium with variable properties under general-
ized thermoelasticity theory were investigated in this study. By 
remaining faithful to Biot’s theory of dynamic poroelasticity, we 
idealized the foundation material as a uniform, fully saturated, 
poroelastic half-space medium. We first subjected this medium to 
time harmonic loads consisting of normal or thermal loads, then 
investigated the differences between the coupled thermohydro-
mechanical dynamic models and the thermo-elastic dynamic mod-
els. We used normal mode analysis to solve the resulting non-
dimensional coupled equations, then investigated the effects that 
non-dimensional vertical displacement, excess pore water pressure, 
vertical stress, and temperature distribution exerted on the poroe-
lastic half-space medium and represented them graphically. 
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NOMENCLATURE 

wc   Heat capacity of pore water 

sc   Heat capacity of solid grains 
e   Volumetric strain of soil 
g   Gravity 
K   Coefficient of thermal conductivity 

dk   Coefficient of permeability 

m   Volumetric heat capacity of medium 
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NOMENCLATURE (continuation) 

0n   Porosity 
p   Excess pore water pressure 
Q   Magnitude of applied temperature  
q   Magnitude of applied load 
T   Absolute temperature of medium 

0T   Reference temperature 

s   Thermal expansion coefficient of solid grains 

w  Thermal expansion coefficient of pore water 
1    3 2 sG   

ij   Components of strain tensor 

    0T T    
,G Lame’s constants 

   Poisson ratio 
   Density of medium 

w  Density of pore water  

s   Density of solid grains 

ij   Components of stress tensor 

   Thermal relaxation time 
 

1 INTRODUCTION 

The effects of temperature on the behavior of soil is an important engineering concern. Temperature 
can impact the disposal of high-level radioactive waste, the extraction of oil or geothermal energy, 
the storage of hot fluids, road subgrades, and furnace foundations. The theory of thermoelasticity 
was developed in order to analyze these problems associated with thermodynamics. 

The classical coupled thermoelasticity proposed by Biot (1956) predicts an infinite speed for 
heat propagating in elastic media, which is physically impossible. To eliminate this inherent para-
dox, subsequent generalized thermoelastic theories have been developed by Lord and Shulman (L-S) 
(1967), Green and Lindsay (G-L) (1972), and Green and Naghdi (G-N) (1991, 1992, 1993). An ex-
tensive theory of thermoelasticity was formulated by Lord and Shulman that introduced a heat flow 
rate term together with a thermal relaxation time into Fourier’s law of heat conduction. By modify-
ing both the energy equation and Duhamel-Neumann’s law, Green and Lindsay introduced the con-
cept of allowing two relaxation times. A form of thermoelastic theory that allowed for no energy 
dissipation was proposed by Green and Naghdi. Other generalized thermoelastic theories include the 
two-temperature generalized thermoelasticity formulated by Youssef (2006) and the dual-phase-lag 
thermoelasticity introduced by Tzou (1995). Hetnarski and Ignaczak (1999) examined five concern-
ing theories of the coupled theory of thermoelasticity. 
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A great deal of research attention has been focused on the wave propagation problem in context 
of generalized thermoelasticity. Singh (2007) solved a two-dimensional homogeneous, isotropic gen-
eralized thermoelastic half-space problem in the context of Lord and Shulman theory of generalized 
thermoelasticity. The propagation of waves in a transversely isotropic micropolar medium pos-
sessing thermoelastic properties under three different theories are discussed by Kumar and Gupta 
(2010). Bijarnia and Singh (2012) investigated the propagation of four different plane waves in a 
solid half-space with diffusion in the context of the Lord and Shulman theory of generalized thermo-
elasticity. Lotfy (2014) investigated a two-temperature problem for an isotropic homogeneous elastic 
half-space under three thermoelastic theories. Lotfy and Hassan (2014) solved a thermoelastic wave 
propagation problem for a half-space media subject to thermal shock based on the two-temperature 
theory of thermoelasticity. Abo-Dahab et al. (2015) studied the effects of magnetic field, relaxation 
times, and rotation on the propagation of surface waves in the context of Green-Lindsay theory. 
Singh (2016) explored plane wave propagation in a solid half-space which is rotating, transversely 
isotropic, two-temperature thermoelastic without energy dissipation. Lotfy (2016) introduced the 
dual-phase-lag (DPL) heat transfer model to solve the problem for a isotropic generalized thermoe-
lastic medium with an internal heat source. 

Wave propagation in a thermoelastic porous media is useful in various engineering fields such as 
petroleum engineering, chemical engineering, pavement engineering, and nuclear waste management, 
making it a popular research subject as well. Kumar and Devi (2008) investigated a porous, general-
ized thermoelastic medium subjected to thermomechanical boundary conditions permeated with 
various heat sources. Sherief and Hussein (2012) developed a set of governing equations that effec-
tually create a mathematical model of generalized thermoelasticity in poroelastic materials, then, 
they used this model to solve a thermal shock problem regarding the use of half-space. Abbas and 
Youssef (2015) solved a two-dimensional problem of a porous material in the context of the frac-
tional order generalized thermoelasticity theory with one relaxation time. Wei et al. (2016) studied 
the reflection and refraction phenomenon that occurs in an oblique incidence longitudinal wave at a 
plane interface between an isotropic, homogeneous, thermoelastic medium and a porous thermoelas-
tic medium. Schanz (2009) provided an overview of several poroelastodynamic models and analyti-
cal solutions, and also discussed two different numerical methodologies including the finite element 
method and the boundary element method. 

The role that fluid flow plays in thermoelasticity was neglected in the above studies. With this 
in mind, we conducted the present study because we believe that a thorough knowledge of hydro-
thermal, hydromechanical, and thermal-mechanical processes, as well as knowledge of the interde-
pendence of these processes, is necessary to accurately model the coupled behavior of fluid-saturated 
media. The thermo-hydro-mechanical (THM) coupled behavior of unsaturated soil is a very com-
mon physical phenomenon in nature and very worthy of further research.  

Several previous studies of fluid-saturated media informed our current study. The theoretical 
developments have matured from a simple isotropic poroelastic theory proposed by Biot into a gen-
eral approach to managing coupling and material anisotropy (Abousleiman and Ekbote, 2005). 
Booker and Savvidou (1984) developed an analytic solution for the consolidation of soil around an 
impermeable rigid, spherical, heat source and a point source. Biot (1977) also formulated a new 
thermodynamics theory for elastic saturated porous solids. Bai (2006a) solved a double-layered po-
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rous space subjected to exponential decaying thermal loading, and derived the thermal consolidation 
of layered, saturated porous half-space to various thermal loads with time. Bai (2006b) established 
coupled governing equations for one-dimensional thermal consolidation problems regarding saturat-
ed porous media subjected to cyclical thermal loading. Based on the thermodynamics of irreversible 
processes; Bai and Li (2009) investigated a saturated medium with a long cylindrical cavity subject-
ed to variable thermal loading and variable hydrostatic pressure. Lu et al. (2010) investigated a 
porous elastic medium subjected to a normal force and a thermal source in the context of general-
ized thermoelastic theory with one relaxation time. Liu et al. (2009; 2010a) developed a method to 
overcome one-dimensional problems for an isotropic saturated poroelastic medium including a cylin-
drical cavity and spherical cavity subjected to a time-dependent thermal/mechanical shock in the 
context of thermodynamics theory. That same year, Liu et al. (2010b) solved a thermo-hydro-
elastodynamic problem in a two-phase porous thermoelastic medium. Bai and Li (2013) developed a 
spherical space with a spherical cavity based on the irreversible governing equations of saturated 
porous thermoelastic media and subjected it to variable mechanical and thermal loads. Kumar et al. 
(2014) investigated the propagation of Lamb waves in solids with layers or half-spaces of inviscid 
liquid subjected to stress-free boundary conditions in the context of the Green and Lindsay theory 
of generalized thermoelasticity. Ailawalia and Singla (2016) solved an infinite homogeneous isotropic 
generalized thermoelastic problem under the Lord and Shulman theory of generalized thermoelastic-
ity. 

To date, there have been very few works devoted to investigating thermo-hydro-mechanical 
problems involving normal or thermal loads via normal mode analysis. In this study, we investigat-
ed these thermo-hydro-mechanical problems and the characteristic variable properties in a poroelas-
tic half-space soil medium in the context of generalized thermoelastic theory. We subjected this 
poroelastic half-space to time harmonic loads comprised of normal or thermal loads. The foundation 
material, under Biot’s dynamic poroelastic theory, was idealized as a uniform, fully saturated poroe-
lastic half-space. The distributions of non-dimensional vertical displacement, excess pore water pres-
sure, vertical stress, and temperature distribution were obtained by means of normal mode analysis. 
The numerical results were obtained by performing numerical inversion of the transform integrals. 
These results were then used to analyze the differences between the two methods of coupled ther-
mo-hydro-mechanical dynamic model (THMD) and thermoelastic dynamic model (TMD).  
 
2 BASIC EQUATIONS 

We consider the problem of a saturated, homogenous, isotropic porous elastic half-space. Based on 
theory of three-dimensional consolidation which proposed by Biot (1941), we assume that solid 
grains are incompressible because the Biot’s effective stress coefficient 1  . The dynamic equation 
for the motion of thermo-hydromechanical coupling in the absence of body forces can be written by 
Smith and Booker, Bai and Abousleiman, and Bai as follows (1993, 1997, 2006c): 
 

  1, , , ,i jj j ij i i iGu G u p u          (1)
 

where  1 3 2 sG    . 
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The equation associated with heat conduction for poroelastic soil can be written by Sherief and 
Saleh, and Ram et al. as follows (2005, 2008): 
 

2 2

1 02 2 ,iim T e K
t t t t

    
      

            
 (2)

 

where  0 01w w s sm n c n c    . 

Based on Darcy’s law, the equation of mass conservation of water is: 
 

2

2 , 0w w ii

e e
b p

t t t

           
 (3)

 

where w

d

g
b




 . 

In the absence of a body force or inner heat source, the constitutive governing equation of 
thermo-hydromechanical can be written by Smith and Booker as follows (1993): 
 

 12ij ij ijG e p          (4)
 

The strain-displacement relation equation is: 
 

 1 , ,
2ij i j j iu u    (5)

 
3 FORMULATION OF THE PROBLEM 

We consider the problem of a saturated, homogenous, isotropic porous elastic half-space soil medi-
um subjected to both normal force and thermal loading. The governing equations are written in the 
context of the Lord and Shulman model, where the body is under no anybody force. The Cartesian 
coordinate system  , ,x y z  and displacement components  ,0,iu u w  are introduced below. 

These displacement components have the following forms: 
 

   , , , 0, , ,x y zu u x z t u u w x z t    (6)
 

Based on Eqs. (5) and (6), the strain components have the following forms: 
 

1, , , 0
2xx zz xz xy yy yz

u w u w
e e e e e e

x z z x

               
 (7)

 

where e  is the cubical dilatation, which is expressed as follows: 
 

u w
e

x z

 
 
 

 (8)

 

Based on Eqs. (1), (4), and (5): 
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 
2

2
1 2

e p u
G u G

x x x t

     
     

   
 (9)

 

 
2

2
1 2

e p w
G w G

z z z t

     
     

   
 (10)

 

12xx

u
G e p
x

   
   


 (11)

 

12zz

w
G e p
z

   
   


 (12)

 

xz

u w
G

z x
       

 (13)

 

where 
2 2

2
2 2x z

 
  

 
 is a two-dimensional Laplace operator. 

In order to facilitate the equation, the following non-dimensional quantities are also introduced: 
 

2 2

1

2 2
ij

ij

x V x z V z u V u w V w t V t V

p
p

G G G

      
 

 
 

          

    
 

 (14)

 

where 
2m G

V
K





  . 

In terms of the non-dimensional quantities in Eq. (14), we can transform Eqs. (2), (3), (9), and 
(10) into the following forms (dropping primes for convenience): 
 

 
2

2 2 2 2
21 e p u

u
x x x t

                
 (15)

 

 
2

2 2 2 2
21 e p w

w
z z z t

                
 (16)

 

 
2

2
02 e

t t
   

  
      

 (17)

 
2

2
1 2 3 2
e e

p
t t t

    
   

  
 (18)

 

Accordingly, the constitutive non-dimensional equations are: 
 

 22xx

u
e p

x G

  
   


 (19)

 

 22zz

w
e p

z G

  
   


 (20)
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xz

u w

z x
  

 
 

 (21)

 

where 
 

   
2

20 1
0 1 2 3

1

2
2 2

w wT bb G

m G G G

       
    


      

   
 

Differentiating Eq. (15) with respect to x , and Eq. (16) with respect to z , then adding them 
together, we arrive at follows: 
 

2
2 2 2

2 0e p
t


 
      

 (22)

 
4 NORMAL MODE ANALYSIS 

The solutions for the variables that we considered can be decomposed in terms of normal modes in 
the following form: 
 

             , , , , , , , , , , expij iju w e p x z t u z w z e z z p z t iax               (23)
 

where   is frequency  and a  is the wave number in the x -direction. 
Using Eq. (23), we obtained the following equations based on Eqs. (17), (18), and (22), respec-

tively: 
 

          2 2 2 2 2D a e z D a p z z         (24)
 

       2 2
01 1D a z e z              (25)

 

         2 2 2
1 3 2D a p z e z z           (26)

 

where D d dx . 

Eliminating ( )z   and ( )P z  from Eqs. (24), (25), and (26) yields the following fourth-order 

partial differential equation satisfied by ( )e z : 
 

   4 2 0D AD B e z    (27)
 

Similarly: 
 

   4 2 0D AD B z     (28)
 

   4 2 0D AD B p z    (29)
 

where 
 

2
12A a b   
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4 2
1 2B a b a b    

2 2 2 2
1 1 3 0 0b                  

3 4 2 3 3 4 2 3
2 1 1 3 3 0 2 0 2b                       

 

Equation (27) can be factorized as follows: 
 

    2 2 2 2
1 2 0D k D k e z    (30)

 

where 2 ( 1,2)ik i   are the roots of the characteristic equation. 
 

4 2 0k Ak B    (31)
 

The roots 1k  and 2k  in Eq. (31) satisfy the following relations: 
 

2 2
1 2k k A   (32)

 
2 2

1 2k k B  (33)
 

The solution to Eq. (27) can be expressed as follows: 
 

   
2

1
i

i

e z e z 



   (34)

 

where ( )ie z  is the solution to the following: 
 

   2 2 0 1,2i iD k e z i    (35)
 

The solution of Eq. (30), which is bounded as z , is provided by: 
 

( ) ( , )e ik z
i ie z R a     (36)

 

where ( , )iR a   are parameters depending on a  and  . Thus, ( )ie z  takes the form: 
 

   
2

1
, ik z

i
i

e z R a e 



  (37)

 

Similarly: 
 

   
2

1
, ik z

i
i

z R a e  



   (38)

 

   
2

1
, ik z

i
i

p z R a e 



  (39)

 

where ( )z 
 and ( )P z

 are also parameters depending on a  and   similar to ( )ie z
. 

By integrating Eqs. (37)-(39) into Eqs. (24)-(26), the relations take the following forms: 
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 
 

0
2 2

1
1i i

i

R R
k a

  
 
 

  
 (40)

 

 
 

2 2 2
0

2 2 2 2

1
1

i
i i

i i

k a
R R

k a k a

  
 

     
     

 (41)

 

Accordingly, Eqs. (38) and (39) can rewritten in the following forms: 
 

   
   

2
0

2 2
1

1
,

1
ik z

i
i i

z R a e
k a

  
 

 







    (42)

 

   
   

2 2 22
0

2 2 2 2
1

1
,

1
ik zi

i
i i i

k a
p z R a e

k a k a

  


 




  
  

     
  (43)

 

The following relations can be used to obtain the displacement w  in terms of Eqs. (23) and 
(16): 
 

     2 2 2 2 2 2 1p e
D a w z

z z z

                
 (44)

 

     2 2 2 2 1p e
D n w z

z z z

             
 (45)

 

where 2 2 2 2n a    . 

The solution of Eq. (45), which is bounded as z , is given by: 
 

     

 
  

 
   

2
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1

11 ,

1
,

i
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k znz
i

i i

i i i k znz
i

i i i i

p e
w z Fe R a e

z z z k n

k k a k
Fe R a e

k n k a k n

  

  


 







                
   
    

    




 (46)

 

where  ,F F a   is a parameter dependent on a  and  . 

In terms of Eqs. (8) and (23): 
 

  i w
u z e

a z


  

    
 (47)

 

Substituting Eqs. (37) and (46) into Eq. (47) yields the following: 
 

 

 
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
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   
  
         

  
   

    

  (48)
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Based on Eq. (23), substituting Eqs. (37), (42), (43), (46), and (48) into Eqs. (19)-(21), respec-
tively, yields the following: 
 

 

 
  

 
 

 
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
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


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   
    

  
  

  


 (49)
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   
        

      
 

   

  (50)

 

The normal mode analysis is, in fact, to look for the solution in the Fourier transformed do-
main. Assuming that all the relations are sufficiently smooth on the real line such that the normal 
mode analysis of these functions exist. 

The boundary conditions at 0z   are necessary to determine the parameters ( 1,2)iR i   and F . 

The boundary conditions are as follows: 
(1) Surface stress conditions:  

 

 0 ,xz zz q x t      (51)
 

(2) Thermal boundary condition, where the half-space surface is subjected to a thermal load: 
 

 ,Q x t   (52)
 

(3) Excess pore water pressure boundary condition: 
 

0p   (53)
 

By substituting the expressions of the considered variables into the above boundary conditions, 
we arrive at: 
 

    
  
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      

    
  (54)
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

     
        

    
  (55)
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
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1
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i
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 

  
  

     
  (57)

 

where  ,x t  denotes the load and thermal source distribution function along the x axis . By 

applying Eq. (23),  ,x t  is expressed as follows: 
 

     , , expx t a t iax      (58)
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1
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i i
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k k a k a k k a
F k R

n a k n k a k n

  



     
     

     
  (59)

 
5 NUMERICAL RESULTS AND DISCUSSION 

It is necessary to know the material constants to secure accurate calculation results. Most of the 
mechanical, thermal, and hydraulic parameters used in this paper are the same as those used by Bai 
(2006b): 
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E G E E

c c

n K

k T

     

 

 



 
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     

   

   



 
 

where 0 i    , and i  is the imaginary unit, 0 (cos sin )tte e t i t    . Over small increments of 

time, we let 0  .  

The other constants of the problem are taken as 
 

1.2 1a     
 

To calculate and verify both the THMD and TMD cases, the density of pore water w  and po-

rosity 0n  are assumed to be zero; thus, the solution of the THMD model reduces to the TMD situa-

tion. The equivalent density of the model 3 31.96 10 kg/m    and the equivalent heat capacity 

 2080J/ kg Cc   . Other material parameters were kept the same as those given above to obtain the 

corresponding TMD solution.  
We divided all 12 figures into three cases. In Case 1, based on THMD and TMD methods, we 

investigated the non-dimensional vertical displacement, excess pore water pressure, vertical stress, 
and temperature distribution with two different frequencies 1.6   and 2.5  , respectively as 
shown in Figs. 1-4. In Case 2, we considered four different frequencies 1.6  , 1.8  , 2.1  , 
and 2.5   using the THMD method (Figs. 5-8). The results of both cases indicate variations of 
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non-dimensional vertical displacement w w q  , non-dimensional excess pore water pressure 

p p q  , non-dimensional vertical stress q   , and non-dimensional temperature distribution 

q    on the surface of the half-space with a distance of x  under a uniformly distributed normal 

force. (For convenience, we dropped the punctuation marks in the figures.) In Case 3 we investigat-
ed how the considered variables varied according to the four different frequencies 1.6  , 1.8  , 

2.1  , and 2.5   (Figs. 9-12) in terms of the THMD method. With a uniformly distributed 
thermal source, the variations of non-dimensional vertical displacement w w Q  , non-dimensional 

excess pore water pressure p p Q  , non-dimensional vertical stress Q   , and non-

dimensional temperature distribution Q    on the surface of the half-space are shown below for 

Case 3, (again without the punctuation marks.) These computations were carried out at non-
dimensional depth 1.0z   and time 0.5t  . 
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Figure 1: Vertical displacement for 1.0z   with 0Q   under two methods. 
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Figure 2: Excess pore water pressure for 1.0z   with 0Q   under two methods. 
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Figure 3: Vertical stress for 1.0z   with 0Q   under two methods. 
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Figure 4: Temperature distribution for 1.0z   with 0Q   under two methods. 

 
In the figures above (Case 1), the solid line, dashed line, dotted line, and dashed-dotted line re-

fer to TMD, 1.6  ; TMD, 2.5  ; THMD, 1.6  ; and THMD, 2.5  , respectively. Figure 1 
shows where the two methods yield identical results when frequency is 1.6  . When frequency is 
high, the difference between the two methods are significant. Because our research medium is satu-
rated porous soil, the difference between the two methods is that the THMD method considers the 
effects of the fluid. When the normal load is constant, low frequency gives the water more time to 
drain from the saturated porous soil and the difference between the two methods are not significant. 
When the frequency is high, there is insufficient time for water to drain from the soil and the differ-
ence between the two methods are significant. It is important to take into account non-dimensional 
excess pore water pressure of the soil because it has a considerable effect on ground response. Ac-
cordingly, we investigated the variations in excess pore water pressure with x  distance under uni-
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formly distributed normal force, as shown in Fig. 2. The TMD values remained at zero because we 
did not consider the effects of the fluid in this case. This means that by only using the TMD meth-
od, we were unable to assess excess pore water pressure. In actuality, many practical engineering 
applications are dependent on soil or saturated porous soil such as waste landfill engineering and 
nuclear waste management. Therefore, non-dimensional excess pore water pressure is an important 
physical variable in many real life applications. Figure 3 is similar to Fig. 1: As frequency increases, 
the difference between the two methods becomes more significant. As shown in Fig. 4, frequency  
has an increasing effect under both methods. 
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Figure 5: Vertical displacement for 1.0z   with 0Q   under THMD method. 
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Figure 6: Excess pore water pressure for 1.0z   with 0Q   under THMD method. 
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Figure 7: Vertical stress for 1.0z   with 0Q   under THMD method. 
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Figure 8: Temperature distribution for 1.0z   with 0Q   under THMD method. 

 
In the figures above (Case 2), based on the THMD method, the solid line, dashed line, dotted 

line, and dashed-dotted line refer to 1.6  , 1.8  , 2.1  , and 2.5  , respectively. Our re-
search medium is saturated porous soil, where normal load mainly includes non-dimensional excess 
pore water pressure and non-dimensional vertical stress. As frequency   increases, less water drains 
from the medium while the non-dimensional excess pore water pressure increases. When the normal 
load is constant, non-dimensional vertical stress decreases as the non-dimensional excess pore water 
pressure increases. Similarly, non-dimensional vertical displacement decreases as frequency   in-
creases. The frequency   has an increasing effect upon  all the magnitudes of all physical variables.  
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Figure 9: Vertical displacement for 1.0z   with 0q   under THMD method. 
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Figure 10: Excess pore water pressure for 1.0z   with 0q   under THMD method. 
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Figure 11: Vertical stress for 1.0z   with 0q   under THMD method. 
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Figure 12: Temperature distribution for 1.0z   with 0q   under THMD method. 

 
In the figures above (Case 3), based on the THMD method, the solid line, dashed line, dotted 

line, and dashed-dotted line refer to 1.6  , 1.8  , 2.1  , and 2.5  , respectively. In this 
case, we assumed that only a uniformly distributed thermal source was applied to the surface of the 
half-space. As discussed above, our research medium is saturated porous soil, where normal load 
mainly includes non-dimensional excess pore water pressure and non-dimensional vertical stress. In 
this case, only a uniformly distributed thermal source is applied and the normal load is zero. Thus, 
the absolute value of non-dimensional excess pore water pressure and the absolute value of non-
dimensional vertical stress are equal. A plus or minus sign only denotes that the medium is under 
tension or compression. The thermal expansion coefficient of pore water is greater than the thermal 
expansion coefficient of solid grains. The extent to which water drains from the medium decreases 
as frequency   increases, while non-dimensional vertical displacement, excess pore water pressure, 
vertical stress, and temperature distribution all increase as frequency continues to increase. The 
frequency   has an increasing effect to all the magnitudes of all physical variables. In addition, as 
observed from the figures, the effect of frequency has the same change trend.  
 
6 CONCLUSIONS 

In this study, we investigated the thermo-hydro-mechanical problems of a poroelastic half-space soil 
medium with variable properties under the theory of generalized thermoelasticity. We were able to 
solve these problems using normal mode analysis. Based on the numerical results, we arrived at the 
following conclusions: 

(1) Thermo-hydro-mechanical problems for a porous elastic half-space soil medium with variable 
properties were solved by normal mode analysis, which has been successfully applied in deal-
ing with such complex multi-field coupling problems. The proposed method ultimately yields 
the corresponding fourth-order characteristic equation and exact solutions for the desired 
physical variables. 
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(2) When subjected to a uniformly distributed normal force, the values of non-dimensional ex-
cess pore water pressure in the TMD method are consistently zero because the effect of fluid 
is not considered. This means that the TMD method is not appropriate for determining non-
dimensional excess pore water pressure. Non-dimensional excess pore water pressure is an 
important physical variable in real life engineering. However, fluid presence attenuates the 
response in terms of non-dimensional vertical displacement and vertical stress, which is espe-
cially pronounced at higher frequencies. 

(3) The frequency of a uniformly distributed thermal load has a pronounced effect on non-
dimensional vertical displacement, excess pore water pressure, vertical stress, and tempera-
ture distribution. Furthermore, as observed from the figures of Case 3, the effect of frequency 
has the same change trend. 

(4) Frequency plays an important role in examining the deformation of the body.  
(5) As shown in all figures, it can be clearly observed that the figures reveal is consistent with 

simple harmonic oscillation, which is mainly dominated by the intrinsic nature of the solu-
tion obtained when the normal mode analysis method is applied to decouple the equation. 
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