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Abstract 
In this paper the nonlinear forced vibration of an orthotropic circu-
lar plate resting on Winkler, Pasternak and nonlinear Winkler foun-
dation is investigated. Plates with edges elastically restrained 
against rotation and inplane displacement are analyzed and the 
Von-Karman geometric nonlinear equations are employed. In this 
study it is assumed that the plate can be subjected to any periodic 
distributed lateral loading with respect to time. The Galerkin 
method is used to obtain Duffing's equation for the central deflec-
tion. The Homotopy Perturbation Method was used to study the 
effects of various parameters including orthotropic parameter, elas-
tic foundation parameters and initial deflection on frequency ratio. 
Highly accurate results were obtained by the application of the 
aforementioned method. 
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1 INTRODUCTION 

The increase in the use of thin composite structures, especially in aerospace engineering, leads 
to the rise of difficulties in nonlinear vibrations in various modern engineering challenges, which 
may results in the size of the vibration amplitude of these structures. This situation attains 
greater importance when the plate is subjected to the vibration amplitude of the same order of 
the plate thickness. There are a large number of publications concerning plate theories and 
plate dynamics. An extensive survey of the early investigations on the free vibration of the 
circular plates is given by Leissa (1969). Huang and Sandman (1979) used Kantorovich aver-
aging method to investigate the nonlinear vibrations of a circular plate with a clamped and 
immovable boundary. The forced response of the plate under several different distributions of 
sinusoidal input was also investigated.  
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Nath and Alwar (1979) used the Chebyshev series to study the nonlinear dynamic response 
of orthotropic circular plates for both clamped and simply supported edge conditions. They 
considered the influence of orthotropic parameter under three types of dynamic loadings on the 
response of circular plates. Yamaki et al. (1981) investigated the axisymmetric nonlinear vibra-
tions of a clamped isotropic circular plate under uniformly distributed lateral loading. In this 
study the effect of both initial deflection and initial edge displacement were considered. Addi-
tionally, Nath (1982) studied the effect of foundation parameters on the large amplitude re-
sponse of orthotropic circular plates.  

Dumir presented an approximation solution for the large deflection axisymmetric responses 
of isotropic (1986) and cylindrically orthotropic (1986) thin circular plates resting on nonlinear 
Winkler foundations. According to the results of these studies the buckling load and the linear 
frequency increased with the foundation parameters and the rotational stiffness of the edge 
support. Hadian and Nayfeh (1990) used the method of multiple scales to obtain the symmetric 
response of a circular plate to a harmonic external excitation. The results showed that internal 
resonance is responsible for the coupling of the modes involved and the excited mode is not 
necessarily the dominant one. Wang (2000) used the power series method in solving the non-
linear differential equations of the circular plates to obtain the exact axisymmetric post-buck-
ling equilibrium.  

Eihab et al. (2003) utilized the Von-Karman thin plate theory to account for large static 
deformations in axisymmetric annular plates. The natural frequencies and mode shapes were 
obtained numerically for a series of uniform loads. Shirong and Zhou (2003) investigated the 
axisymmetric nonlinear vibration and the thermal post-buckling of a heated polar orthotropic 
annular plate with both its inner and outer edges immovably hinged. Alipour et al. (2010) used 
the differential transform method to study free vibration of FG circular plates resting on two 
parameter elastic foundations. This study focused on the non-axisymmetric vibration and the 
modal stress analysis. 

There exists a wide arsenal of analytic, semi-analytic and numerical tools for the nonlinear 
analysis of continuous systems. To investigate these problems, different methods such as the 
numerical methods (1995) (1998) and perturbation methods (1973) (1979) were employed alt-
hough they have their own limitations as well. The perturbation methods on the other hand are 
also limited as that they can only be applied to the weakened nonlinear differential equations. 

Researchers were prompted to find analytical solutions for nonlinear equations that did not 
contain the abovementioned limitations. Therefore techniques such as the variational iteration 
method (2008) homotopy analysis method (HAM) (1995) (2003) and homotopy perturbation 
method (HPM) (1999) (2003) were adopted. The present work uses Homotopy Perturbation 
Method (HPM) for the analysis of nonlinear forced vibration of orthotropic circular plate on 
elastic foundation. The basic structural model adopted in this study is the Von-Karman plate 
model. In most previous investigations study large amplitudes of circular plates for simplicity 
usually an assumed space or time mode were used. According to this a simple harmonic function 
in time was employed and based on Kantorovich averaging method it was eliminated from the 
equation of motion. In this study, this procedure ignoring and it is assumed that the time mode 
part can be any periodic function of time. The Galerkin method is used to obtain Duffing's 
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equation for the central deflection. The results of this investigation demonstrated the applica-
bility of HPM for analysis of circular plate for correct quantitative predictions and for qualita-
tive description of operations. 
 
2 GOVERNING EQUATIONS 

The nonlinear Winkler foundation is adopted to model the elastic foundation. For the axisym-
metric case, a distributed force on the circular plate is introduced as follow Dumir (1986): 
 

െሺ݇ݓ െ ݇ேݓଷ െ ሻ (1)ݓଶ݃
 

where w is the transverse deflection, ݇ is the Winkler parameter, ݇ே is the Winkler nonlinear 
parameter, and g is the shear parameter of the Pasternak Foundation. The governing equation 
for large axisymmetric deflection of an orthotropic circular plate in terms of w and stress func-
tion ߰  is as follow Dumir (1986): 
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where ܨሺݎ, ሻݐ ൌ  ሻ can be any periodic distributed lateral loading function of time andݐ݂ሺ	ሻݎሺݍ
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  In this study it is assumed that q(r) is constant. In order to reduce the governing equation to 
dimensionless form the following dimensionless parameters are introduced: 
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Substituting Eq. (5) into Eqs. (2) and (3) yield Dumir (1986): 
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where a is the radius of circular plate. 



246     A.A. Yazdi / Assessment of Homotopy Perturbation Method for Study the Forced Nonlinear Vibration… 

Latin American Journal of Solids and Structures 13 (2016) 243-256 
 

3 METHOD OF SOLUTION 

The plate deflection ݓ	ሺߩ, ߬ሻ is expressed as follow: 
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where ܹ௫ is the maximum deflection at the center of the plate and constants C2 and C4 are 
defined by the boundary conditions. The general solution of Eq. (7) is obtained by the solution 
of the substitution of Eq. (8) into Eq. (7): 
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The value of ߰ is accordingly found to be finite at the origin, ܥଵ ൌ 0.		Additionally, ܥ the 
constant of integration is to be determined from inplane boundary conditions. The ki coefficients 
are defined as: 
 

݇ଵ ൌ
െ24ܥଶ

ଶ൫ߚ െ ఏݒ
ଶ൯

9 െ ଶߣ
߶ଶሺ߬ሻ (10-a)

 

݇ଶ ൌ
െ96ܥଶܥସ൫ߚ െ ఏݒ

ଶ൯
25 െ ଶߣ

߶ଶሺ߬ሻ (10-b)
 

݇ଷ ൌ
െ96ܥସ

ଶ൫ߚ െ ఏݒ
ଶ൯

49 െ ଶߣ
߶ଶሺ߬ሻ (10-c)

 

The Substitution of the expressions for w and ߰ given by Eqs. (8) and (9) respectively into 
Eq. (6) and the application of the Galerkin procedure in the nonlinear time differential equation 
obtained in the form: 
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As it can be seen coefficients L1, L2 and L3 are function of ߚ, ,ܥ  ସ. These constantsܥ	and	ଶ,ܥ
can be determined from boundary conditions. For a plate with an elastically restrained outer 
edge, with rotational and inplane stiffness ܭ

∗ and ܭ
∗, subjected to applied inplane radial force 

resultant N* at the outer edge the boundary conditions are: 
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where ݑ∗ is the radial displacement at midplane. Introduce dimensionless parameters Kb, Ki 
and N: 
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The boundary conditions at ߩ ൌ 1 take the following dimensionless form: 
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Constants ܥଶand ܥସ can be found from the two first Eqs.(17-a) and (17-b) and ܥ is ob-
tained from Eq. (17-c): 
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In the next section the applicability of HPM to solve Eq. (11) is discussed in details.  
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4  HE’S HOMOTOPY PERTURBATION METHOD 

The homotopy perturbation method (HPM) is a combination of the classical perturbation 
technique and homotopy concept. By the homotopy method, He constructed a homotopy 
    Rprw  1,0:,  which satisfies He (2003): 
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where p is an embedding parameter, L and N are linear and nonlinear parts of Eq. (11) and u0 
is initial approximation of Eq. (11) which satisfies the initial conditions. Assuming the solution 
of Eq. (11) can be expressed as a power series of p: 
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In Eq. (24) when  → 1 the approximate solution of Eq. (11) is obtained. In order to inves-
tigate primary resonance of the system and implementation of the HPM the following homotopy 
is constructed: 
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where ሺ ሻሷ  is the second derivative of ߶ with respect to ߬, and Ω is excited frequency. The 
solution of Eq. (25) and the square of natural frequency can be expressed by the parameter p 
as follow: 
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Introducing new variable ߬∗ ൌ Ω߬ then Eq. (25) can be written as: 
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Substituting Eqs. (26) and (27) into Eq. (28) and equating the terms with identical power 
of p, one can obtain:  
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If ݂ሺ߬∗ሻ is a periodic function of ߬∗ then it can be represented by infinite series of harmonic 
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where T is the period of the function. If  Ω ൌ
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 then we have: 
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To satisfy the initial conditions, the initial guess of u0 is chosen as follow: 
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where ߠ is the phase angle. Substituting Eq. (33) into (31) results in: 
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మ
ଷ


ర
ହ
ቁ. In order to identify the nonlinear frequency the secular term which 

may occur in the next iteration should be eliminated. By setting the coefficients of cos߰ and 
sin߰ to zero and ignoring the parameter θ the following equation is resulted: 
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Table 1: Frequency ratio for an isotropic circular plate for different values of  
non-dimensional vibration amplitudes. 
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If the first-order approximation is sufficient then we have: 
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Substituting Eq. (36) into (35) one can obtain: 
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5  RESULTS 

In table 1 to verify the accuracy of the presented method, a comparison has been made between 
the results of previous works exist in the literature and the data given by Eq. (37) for non-
resonance conditions (X=0). As it can be seen, discrepancy between numerical results obtained 
by HPM and previous works at large vibration amplitudes is about 3.6% at Wmax/h=2. 

In figures 1 and 2 the primary resonance response of an isotropic thin circular plate for two 
different cases; f(t)=et and f(t)=t with T=2π are shown, respectively. It should be noted that the 
predicted results are reliable since the vibration amplitude is smaller than the thickness of plate. 

The influence of orthotropic parameter on the frequency ratio of the circular plate is indi-
cated in Fig. 3. As it can be seen for β<10 the results show hardening type nonlinearity while 
for β≥10 turning to softening for vibration amplitude. Fig. 4 demonstrates the effect of Winkler 
linear foundation (ܭ) and Winkler nonlinear foundation (ܭே) parameters for constant Pas-
ternak foundation parameter (G=50) on primary resonance response for f(t)=et.  

It can be concluded that the Winkler nonlinear foundation parameter (ܭே) may have a 
positive effect on the response behavior. The similar behavior for different values of ܭே on 
frequency ratio for free vibration can be seen in Fig. 5. According to this figure, the positive 
values of  ܭே can have a positive effect on the hardening nonlinearity degree in comparison 
with negative values of ܭே.  

 

Figure 1: Effects of large vibration amplitudes on frequency ratio for f(t)=t and T=2π. 
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Figure 2: Effects of large vibration amplitudes on frequency ratio for f(t)=et and T=2π. 

Additionally, it is clear that for while vibration amplitude (Wmax/h) remains constant an 
increase in the value of ܭே results in the reduction of the frequency ratio. The variation of 
frequency ratio for various values of Pasternak foundation parameter (G) is depicted by Fig. 6. 
It demonstrates that all response curves exhibit initial softening trends and revert to hardening 
amplitudes at large amplitudes although the degree of hardening vary. It is interesting to note 
that for higher amplitude vibration ratios, increasing the Pasternak foundation parameter yields 
the discrepancy reduction between linear and nonlinear frequency. In other words, the Paster-
nak foundation parameter has the ability to limit the effect of large amplitude vibration on 
nonlinear response.  
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Figure 3: The influence of orthotropic parameter on the frequency ratio of the circular plate. 
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Figure 4: The effect of Winkler foundation parameters on the frequency ratio  

of the circular plate for f(t)=et and T=2π. 

 

 

Figure 5: The effect of Winkler nonlinear foundation parameter on the frequency ratio. 

 
Fig. 7 illustrates the effect of outer edge radial force resultant on frequency ratio. According 
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reduction of frequency ratio. This behavior can be attributed to the fact that the variation of 
N can affect the stiffness of orthotropic circular plate. 

In Fig. 8 the influence of Pasternak foundation parameter and radial force resultant on 
frequency ratio are considered. As it is shown, a decrease in the value of Pasternak foundation 
parameter results in the rise of frequency ratio. In the other word the increase in the value of 
the Pasternak foundation parameter results the discrepancy reduction between linear and non-
linear frequency. This fact is also emphasized in Fig. 6. Additionally similar conclusions can be 
reached from the decrease in the value of the resultant radial force.   

As was indicated previously, the influences of Winkler nonlinear foundation and Pasternak 
foundation parameters in comparison with the other system properties on frequency ratio are 
more effective and considerable which is illustrated in Fig. 9. According to the results a com-
bination of negative values of KNL, with an increase in the value of the Pasternak foundation 
parameter leads to a reduction in the frequency ratio. Contrariwise, for KNL>0, combined with 
an increase in the value of G can result in the achievement of higher values of the frequency 
ration.  According to this figure, KNL=0 is a turning point. Also, it should be noted that 
reduction of KNL yields the growth of frequency ratio. Based on these results, the frequency 
ratio is deeply depending on KNL and G.  
 

 

Figure 6: The effect of Pasternak foundation parameter on the frequency ratio. 
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Figure 7: The effect of outer force radial resultant force on the frequency ratio. 

 

 

Figure 8: The influence of Pasternak foundation parameter and radial force resultant on frequency ratio. 
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Figure 9: The influences of Winkler nonlinear foundation and Pasternak foundation parameters  

on frequency ratio of circular plate. 

 
5  CONCLUSION 

In this paper the nonlinear forced vibration of orthotropic circular plate resting on elastic foun-
dation is investigated. The Galerkin method and homotopy perturbation method are both em-
ployed to study the nonlinear forced vibration of circular plate. The effect of different parame-
ters such as elastic foundation parameters and orthotropic parameter are considered. According 
to the results, the effects of Winkler nonlinear foundation and Pasternak foundation parameters 
on frequency ratios are more considerable. 
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