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Abstract 
The purpose of this study is to obtain numerical estimations of seis-
mic pressures in offshore areas considering the effect of seabed con-
figurations and soil materials. To this end, the Boundary Element 
Method is used to irradiate waves, so that force densities can be 
obtained for each boundary element. From this hypothesis, Huygens´ 
Principle is implemented since the diffracted waves are constructed 
at the boundary from which they are radiated. Application of bound-
ary conditions allows us to determine a system of integral equations 
of Fredholm type of second kind and zero order. Various models were 
analyzed, the first one is used to validate the proposed formulation. 
Other models of ideal seabed configurations are developed to esti-
mate the seismic pressure profiles at several locations. The influence 
of P- and SV-wave incidence was also highlighted. In general terms, 
it was found that soil materials with high wave propagation velocities 
generate low pressure fields. The difference between the maximum 
pressure values obtained for a soil material with shear wave velocity 
of β ൌ 3000 m/s is approximately 9 times lower than those obtained 
for a material with β ൌ 90 m/s, for the P-wave incidence, and 2.5 
times for the case of SV-waves. These results are relevant because 
the seabed material has direct implications on the field pressure ob-
tained. A relevant finding is that the highest seismic wave pressure 
due to an offshore earthquake is almost always located at the sea-
floor. 
 
Keywords 
Offshore structures, seismic pressures, oil industry, earthquake, 
elastic waves, Boundary Element Method. 
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1 INTRODUCTION 

Several studies have pointed out that marine seismic activity is considerable. In fact, a large number 
of seismic movements have epicenters in offshore areas (Mangano et al., 2011). On the other hand, 
Sasaki et al. (1986) reported that the most intense earthquakes in Japan, which caused great damage, 
were generated offshore rather than onshore and then they pointed out that installation of seabed 
sensor is very important to obtain preliminary signs of a destructive earthquake. Additionally, Taka-
mura et al. (2003) mentioned that seaquakes are characterized by the propagation of vertical earth-
quake motions at the sea bottom as a compression wave and are reported to cause damage to ships 
and their effect on floating structures is a matter of great concern. With this idea in mind, these 
authors found an important link between the vibration of the floating structure and the deformation 
of the seabed when a seaquake takes place. 

Marine installations are necessary and seismic effects on them should be taken into account. 
Marine structures cover a broad range of forms and functions. For instance, submarine pipelines, sea 
platforms, ships, breakwaters, marine tunnel, among others. In this context, results that contribute 
to the better understanding of the effects of seismic actions on marine structures are useful to increase 
the safety level of the offshore industry. Experimental, analytical and numerical methods have been 
carried out to deal with this issue. 

In order to examine the seismic behavior of breakwaters, an analysis of coupled hydrodynamic 
response characteristics and water pressures on the breakwaters was carried out by a shaking table 
model test (Uwabe et al. 1983), their results suggest that modeling and material properties are very 
important factors to simulate the actual field conditions. Moreover, a substructure on-line dynamic 
testing system used to investigate the interaction between an offshore structure and the foundation 
soil subjected to seismic loads was developed in (Hyodo et al. 2000). Such study evinced that the 
residual deformation of the foundation could be attributed to the seismic motion effect. In Jinsi (1985) 
exhaustive discussions and assessments of field data and their application to submarine pipeline design 
were carried out. This author investigated on the potential effects of seismic shocks, the strength and 
lifetime stability of pipelines. 

Other field investigations showed that the liquefaction occurred during the 1995 Kobe earthquake 
may affect the Kobe Harbor´s walls and failures could be expected when the intensity of seismic 
inertia forces is as strong as the one that was experienced in 1995 (Towhata et al. 1996). On the other 
hand, experimental studies have been performed as a research project of the Japan Ocean Industries 
Association to analyze the earthquake induced dynamic water pressure on offshore structures in ice-
covered waters (Kobayashi and Kawaguchi 2000). They observed that the earthquake induces dy-
namic water pressures, which are greatly increased by the presence of an ice sheet attached around 
the offshore structure. During the 2003 Tokachi-Oki earthquake, pressure variations were registered 
by the ocean-bottom observatory located near the epicenter (Le et al., 2009). They reported that 
acoustic (pressure) waves bouncing up and down between the hard bottom and the sea surface were 
generated by the seismic seafloor displacement. Their results also evinced that soft sediment layers at 
the ocean-bottom should be taken into account to estimate accurate pressure values.  

Saito et al. (2010) recorded the pressure change associated with the 2010 Chile earthquake tsu-
nami using cabled ocean-bottom pressure gauges deployed offshore Japan. They also pointed out that 
the pressure gauges can record broadband tsunami signals reflecting the wide-wavenumber-range 
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spatial spectrum for sea-bottom deformation caused by the earthquake. Kato et al. (2010) reported 
variations of seismic velocities and converted teleseismic waves that revealed the presence of zones of 
high-pressure fluids in the subducting Philippine Sea plate in Tokai district, Japan. They pointed out 
that overpressured fluids appear to be trapped within the oceanic crust by an impermeable cap rock 
and that such pressures are reduced in zones where permeable soils exist. An autonomous data-
acquisition system was installed on the sea floor to record seismic and pressure signals generated by 
earthquakes and tsunamis (Mangano et al., 2011). In Lipa et al. (2011) pressure-sensor observations 
of changes in the sea surface elevation and observations of sea level fluctuations at the coast were 
done in order to obtain warnings of the presence of tsunamis. They also found that the bathymetric 
effects are very important to determine precise predictions. 

Baba, Takahashi and Kaneda (2013) studied the correlation between coastal and offshore tsunami 
height using an array of ocean-bottom pressure gauges. In this study, ocean-bottom pressure fluctua-
tions during tsunamis were obtained, which were also verified by using numerical models. They em-
phasized that there is a correlation between the average absolute ocean bottom pressure and tsunami 
height at the coast. Following this idea, a dense ocean-floor network system for earthquakes and 
tsunamis started its operation in Nankai Trough, SW Japan in the early of 2010 using various sensors 
such as broadband seismometer, seismic accelerometer, tsunami meter, etc (Matsumoto et al. 2014; 
Matsumoto, Kawaguchi and Araki, 2015). 

Earthquake induced hydrodynamic pressures acting on the surface of axisymmetric offshore struc-
tures were studied by Sun and Nogami (1991). These authors developed a semi-analytical and semi-
numerical approach based on the use of a complete and non-singular set of Trefftz functions to de-
termine earthquake induced hydrodynamic pressures. In this study, effects of water compressibility, 
gravity waves on the water surface and the geometrical shape of the structural surface were discussed. 
A seismic analysis method for floating offshore structures subjected to the hydrodynamic pressures 
induced from seaquakes was developed by Lee and Kim (2015). Here, the authors applied their method 
to the seismic analysis of a simplified floating offshore structures, finding that, the dynamic response 
of the floating offshore structure induced by the vertical seismic motion of the ocean bed can be 
greatly influenced by the compressibility of the sea water and the energy absorption capability of the 
seabed. 

On the other hand, numerical methods have significant advantages over the other methods like 
field instrumentations and analytical solutions. For instance, analytical methods frequently treat the 
problem by simplifications of the reality. Then, an analytic solution is to know absolutely how the 
model will behave under any circumstances, but it works only for simple models. Field instrumenta-
tions are very expensive and the results are limited to the site and conditions where they are installed. 
Numerical methods are mainly used to solve complex problems, physically or geometrically. 

In the field of our interest, numerical methods to study the seismic effects in offshore areas have 
been developed. For instance, the Finite Element Method (FEM) was used to model the behavior of 
breakwaters under marine seismic actions finding that the FEM is appropriate for simulating the 
dynamic response and hydrodynamic pressures of the fill type breakwater (Uwabe et al. 1983). Sim-
ulations of open-ended piles in sand under earthquake and seaquake actions were dealt by (Choi et 
al. 2000), here the authors demonstrated that the capacity of short (≲ 27 m) open-ended single pipe 
piles installed in a simulated water depth greater than 220 m was reduced severely and the soil 
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plugging resistance was degraded by more than 80%. Additionally, FEM was also used to study the 
seismic response of underwater storage tanks resting on a horizontal seabed subjected to stochastic 
earthquake loading (Karadeniz 2007), here the interactive water pressure acting on the tank during 
the free motion of the tank and earthquake motion was calculated. Moreover, submarine slope stabil-
ity was evaluated using a 2D limit equilibrium numerical method. This method allowed to understand 
that earthquake loading can drastically reduce the shear strength of sediment with increased pore 
water pressure (Zhang and Luan 2013). 

Moreover, the Boundary Element Method (BEM) has been applied to solve problems related to 
fluid-solid media subjected to seismic excitations. For instance, for the dynamic response of a concrete 
gravity dam subjected to ground motion and interacting with water, foundation and bottom sediment 
was studied using the Boundary Elements (Dominguez and Gallego 1996). These authors concluded 
that the sediment compressibility has a very important effect on the dam response and that the 
influence of the thickness of the sediment layer is significant. Moreover, Schanz (2001) applied the 
BEM to study the dynamic responses of fluid-saturated semi-infinite porous continua subjected to 
transient excitations such as seismic waves. The model allows one to represent continuous media with 
water, viscoelastic and fluid-filled pore-elastic zones. On the other hand, a special boundary method 
for earthquake-induced hydrodynamic pressures on rigid axisymmetric offshore structures, including 
both the water compressibility and seabed flexibility, was presented (Avilés and Li 2001). These 
authors showed numerical results for different geometries of the structural surfaces. Moreover, the 
effects of water compressibility and seabed flexibility were examined. 

Finally, a boundary integral equation was derived to analyze the seaquake-induced hydrody-
namic pressure acting on the floating structure, assuming that the seabed is a semi-infinite homo-
geneous elastic solid (Takamura et al. 2003). In their work, they reported that the response char-
acteristics of the floating structure largely depend on the vibration properties of the ground surface, 
and the elastic deformation characteristics of the floating body depend on the rigidity of the floating 
body and the ground. Moreover, Higo (1997) and Jang and Higo (2004) used boundary integral 
equations to calculate the hydrodynamic pressure on floating structures caused by seaquakes. In 
these studies, 2D- and 3D-media were considered and the effect of seaquake forces on the floating 
structure was emphasized. Qian and Yamanaka (2012) developed the BEM to study the interaction 
of seismic waves in irregular fluid solid interfaces in multilayered media. To this end, they defined 
a global matrix with boundary and continuity conditions in such way that they propagate the 
information of the element displacements and tractions 'downwards' for layers above the source 
while 'upwards' for layers below the source. The authors pointed out that their method could be 
applied to offshore wave propagation. Some recent applications of BEM are focused on the seismic 
amplifications in offshore areas considering the effects of compressional and distortional seismic 
waves (e.g. Rodríguez-Castellanos et al. 2014). In such work, the seismic amplifications due to 
simple bathymetric features are highlighted. 

The contribution and novelty of the present work is the use of integral equations (solved numer-
ically by the Boundary Element Method) to study the effects of seismic actions in offshore and onshore 
areas. In addition, emphasis is made on the effects of bathymetries, type of seismic waves that hits 
the seafloor and the properties of the seabed. Under these circumstances, pressure fields are obtained 
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and discussed, in frequency and time domain. These pressures are calculated along the water depth 
at several locations. The following sections describe this formulation. 
 
2 FIELD EQUATIONS IN ELASTODYNAMICS 

The basic equations of elastodynamics written according to the classic work of Pao and Mow (1973) 
are: 

Equations of motion: 
 

,ߪ  ܾߩ ൌ ሷݑߩ , (1)
 

strain-displacement relations: 
 

ߝ ൌ
భ
మ
൫ݑ,  ,൯, (2)ݑ

 

and stress-strain relations: 
 

ߪ ൌ ߜߝߣ  , (3)ߝߤ2
 

where: ݑ ൌ ,ሺxݑ   are the stress andߝ  andߪ ,ሻ is the displacement vector at the point x at time tݐ
deformation tensors, respectively, λ and μ are the Lame´s constants and ρ is the mass density. The 
equations are related to a Cartesian coordinate system (i, j=1, 2 ) where indicial notation is used 
(convention of sum over repeated indices; the commas indicate spacial derivation; and the points 
means temporary derivation). The Kronecker´s delta is δ୧୨ and it is defined as equal to one if i=j and 

zero if i≠j. In Equation (1) ܾ are the body forces. 
By combining Equations (1) and (3), one can obtain the Navier equation, having: 

 

ሺߣ  ,ݑሻߤ  ,ݑߤ  ߩ ܾ ൌ ሷ. (4)ݑߩ
 

This is the governing equation for an elastic, homogeneous and isotropic solid of volume Ω  and 
surface Γ. 

Defining the compressional and shear wave velocity (ߙ and ߚ), respectively, as: 
 

ଶߙ ൌ
ሺఒାଶఓሻ

ఘ
   and ߚଶ ൌ ఓ

ఘ
. (5)

 

Using Equation (5), it is possible to rewrite Equation (4), as: 
 

ሺߙଶ െ ,ݑଶሻߚ  ,ݑଶߚ  ܾ ൌ ሷ (6)ݑ
 

These equations are subject to the initial conditions ݑሺx, 0ሻ ൌ ݑ
 and ݑሶ  ሺx, 0ሻ ൌ ሶݑ 

	in the domain 
Ω, with boundary conditions: 
 

,ሺxݑ ሻݐ ,  x ∈  ଵ߁
,ሺxݐ ሻݐ ൌ ߪ ݊ ,  x ∈  ,ଶ߁

(7)

 

so that the boundaries ߁ଵ and ߁ଶ are the surfaces where the displacemens (ݑ) and tractions (ݐ) are 
assigned, respectively, and ݊ሺxሻ is the ith component of the normal vector pointing outside the 
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volume. Moreover, it is accepted that the movements and the second order derivatives are continuous 
(Manolis and Beskos, 1988). 

In accordance with the Helmholtz theorem, any displacement field can be expressed as the sum 
of the gradient of a scalar field	߶ and the rotational ߰ of a vector field, in such a way that: 
 

ݑ ൌ ߮,  ߰,, (8)ߝ
 

where the alternated tensioner ߝ	 is +1 when the subindexes are in cyclical order (123, 231, 312 ), 

-1 when they are in acyclic order (321, 213, 132) and 0 when two subindexes are repeated, ߰, ൌ 0. 
By replacing the potential representation for ݑ in the equation of motion (6), this can be written 

in terms of the displacement derivatives, neglecting the body forces, as: 
 

ଶ߮ߘଶߙ ൌ ሷ߮ , 
ଶ߰ߘଶߚ ൌ ሷ߰ , 

(9)

 

where ଶ is the Laplacian operator. 
The Lame´s theorem (Aki and Richards, 1980) ensures that each solution of equation (6) is 

contained in equations (9). In addition, there are only two wave types that propagate in an elastic, 
infinite and solid medium, one of them given by the vector field φ, which propagates at a velocity α  
and the other given by the field	߰, which propagates at a velocity β. 

The integral representations, such as those studied in the next section, satisfy equations (9). Once 
implemented the boundary conditions of the problem, a system of integral equations is formed. This 
is detailed in the following section. 
 
3 FORMULATION OF THE PROBLEM IN TERMS OF INTEGRAL REPRESENTATIONS 

The integral formulation shown in this section gives a numerical solution to obtain pressure variations, 
with water depth, due to seismic actions. Various seafloor configurations are considered. Schemati-
cally, Figure 1 shows an outline of an oil field and illustrates the range of marine structures that are 
used at different sea depths. The configuration is a ramped one and reaches up to the coastline.  
 

 

Figure 1: Offshore oil facilities used for different water depths under seismic motions.  
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To apply our integral formulation we need to define the boundary conditions and the regions in 
which the problem is divided (see Figure 2). In Figure 2a, the domain is divided into Region E (soil) 
and Region F (water). The boundary conditions considered are: traction-free boundary condition at 
the earth surface, pressure-free boundary conditions at the water surface and continuity of tractions 
and displacements at the water-soil interface. The incidence of P- and SV-waves is shown schemati-
cally in Figure 2a, where Ha is the water depth.  

In Figure 2b, the boundary mesh is illustrated. Region E (soil) is delimited by the boundaries 
E1 and E2 , while Region F is delimited by F1 and F2 . Here the variables M, N and K 

represent the number of boundary elements that are used to discretize the boundaries. 
 

 

Figure 2: a) Boundary conditions; b) Boundary mesh. The domain is divided into Region E (soil) and  

F (water) and the variables N, M and K are the number of boundary elements used for the mesh. 

 
Integral representations for the problem studied 
Consider the movement of an elastic, homogeneous and isotropic solid of volume Ω, delimited by the 
boundary Γ. Introducing fictitious sources of density ߶	on Γ, the total fields of displacements ݑ and 
tractions ݐ can be written, in frequency domain, as Banerjee and Butterfield (1981):  
 



N. Flores-Guzmán et al. / Seismic Pressures in Offshore Areas: Numerical Results     3069 

Latin American Journal of Solids and Structures 13 (2016) 3062-3084 

,ሺxݑ ߱ሻ ൌ න ܩ


ሺx, ,ࣈ ߱ሻ߶ሺࣈ, ߱ሻ݀Γక  න ܩ
ஐ

ሺx, ,ࣈ ߱ሻܾሺࣈ, ߱ሻ݀Ωక  ݑ
ሺx, ߱ሻ 

,ሺxݐ ߱ሻ ൌ  ܶ
ሺx, ,ࣈ ߱ሻ߶ሺࣈ, ߱ሻ݀Γక   ܶஐ

ሺx, ,ࣈ ߱ሻܾሺࣈ, ߱ሻ݀Ωక  ݐ
ሺx, ߱ሻ. 

(10)

 

where ܩሺx, ,ࣈ ߱ሻ and ܶሺx, ,ࣈ ߱ሻ are the Green's functions for displacements and tractions, respec-

tively, which can be found in Rodriguez-Castellanos et al. (2014); ݑ
ሺx, ߱ሻ and ݐ

ሺx, ߱ሻ are free terms 

depending on the type of elastic waves impinging on the body (region E), for this study it is the 
occurrence of P- and SV-waves, x ൌ ሼݔଵ, ଷሽ and ݔ ൌ ሼξଵ, ξଷሽand ߱ is the circular frequency. The 
variables x,  .represent the receiver and source points, respectively, and ܾ are the body forces ࣈ

If the body is a fluid, the following functions represent the displacement and pressure fields: 
 

,ிሺxݑ ߱ሻ ൌ
ଵ

ఘఠమ 
డீಷሺx,ࣈ,ఠሻ

డ ߰ሺࣈ, ߱ሻ݀Γక 
ଵ

ఘఠమ 
డீಷሺx,ࣈ,ఠሻ

డ
ܾிሺࣈ, ߱ሻ݀Ωకஐ , 

,ிሺx ߱ሻ ൌ  ிܩ
ሺx, ,ࣈ ߱ሻ߰ሺࣈ, ߱ሻ݀Γక   ிஐܩ

ሺx, ,ࣈ ߱ሻܾிሺࣈ, ߱ሻ݀Ωక, 
(11)

 

where ߰ ሺx, ߱ሻ is the force density for the fluid, ߩ is the fluid density, ܩிሺx, ,ࣈ ߱ሻ is the Green function 

for the fluid and is given by ܩிሺx, ,ࣈ ߱ሻ ൌ ఘఠమ

ସ
ܪ
ሺଶሻሺ߱ݎ ܿி⁄ ሻ, ܪ

ሺଶሻ is the Hankel function of the second 

kind and zero order , r is the distance between x and ࣈ, ܿி is the fluid velocity. The superscript F 
denotes fluid and “i” is the imaginary unit. The subindex “n” in Equations (11) indicates the normal 
projection of the displacements. 
 
Boundary conditions of the problem 
The boundary conditions that have to be imposed to the problem are (see Figure 2a): 

On the free surface of the water the pressure is zero, i.e.: 
 

,ிሺx ߱ሻ ൌ 0, ∀ x ∈ ߲ଶ(12) .ܨ
 

At the free Surface of the earth: 
 

ݐ
ாሺx,	߱ሻ ൌ 0,			∀ x ∈ ߲ଶ(13) .ܧ

 

At the seabed: 
Continuity of normal displacements: 

 

ݑ
ாሺx, ߱ሻ݊ ൌ ,ிሺxݑ ߱ሻ, ∀ x ∈ ߲ଵܧ , ߲ଵ(14) .ܨ

 

Stresses in the solid are balanced with water pressure: 
 

ݐ
ாሺx, ߱ሻ݊ ൌ െிሺx, ߱ሻ, ∀ x ∈ ߲ଵܧ , ߲ଵ(15) .ܨ

 

Shear stress is zero in solid-water interface: 
 

൫ߜ െ ݊ ݊൯ݐ
ாሺx, ߱ሻ ൌ 0, ∀ x ∈ ߲ଵܧ , ߲ଵ(16) .ܨ

 

݊ is the outward vector to the boundary. According to the boundary conditions, Equations (12) - 
(16), taking into account Equations (10) and (11), and neglecting the body forces, we can write the 
following integral equations:  
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 ,ிሺxܩ , ߱ሻ߰ሺࣈ, ߱ሻ݀Γకడி ൌ 0, (17)
 

 ܶ
	 ሺx, ξ, ߱ሻ߶ሺࣈ, ߱ ሻ݀Γక

	
డா ൌ െݐ

 ሺx,	߱ሻ, (18)
 

൫ ܩ
	 ሺx, ,ࣈ ߱ሻ߶ሺࣈ, ߱ሻ݀Γక

	
డா ൯݊ െ

ଵ

ఠమ 
డீಷሺx,ࣈ,ఠሻ

డడி ߰ሺࣈ, ߱ሻ݀Γక ൌ െݑ
ಶ	ሺx,	߱ሻ, (19)

 
ሺ ܶ

	 ሺx, ,ࣈ ߱ሻ߶ሺࣈ, ߱ሻ݀Γక
	
డா ሻ݊   ,ிሺxܩ ,ࣈ ߱ሻ߰ሺࣈ, ߱ሻ݀Γకడி ൌ െݐ

ಶሺx,	߱ሻ, (20)
 

ሺ ܶሺx, ,ࣈ ߱ሻ߶
	 ሺࣈ, ߱ሻ݀Γకడா ሻ൫ߜ െ ݊ ݊൯ ൌ െݐఛா ሺx, ߱ሻ. (21)

 
The variables ݑ

ಶሺx, ߱ሻ, ݐ
ಶሺx, ߱ሻ and ݐఛ

ಶሺx, ߱ሻ are the incident displacement and traction fields 
expressed in terms of the normal ሺ݊ሻ and tangential (߬) directions to the boundary. Equations (17) - 
(21) represent the Fredholm´s system of integral equations of 2nd-kind and 0-order to be solved.  
 
3.1 Discretization Scheme of the Boundary Intregral Equations 

To numerically solve the system of integral equations (17) – (21), we discretize these properly. In 
general, the boundaries of each region are discretized into linear segments (N-, M- and K-boundary 
elements, see Figure 2b) whose size depends on the shortest wavelength (six boundary segments per 
wavelength). The force densities ߶ሺx, ߱ሻ and ߰ሺx, ߱ሻ are taken to be constant along each segment 
and Gaussian integration (or analytical integration, where the Green’s function is singular) is per-
formed. The system to be solved is composed of KNMN  )(2  equations. Once the system of 

integral equations is solved, the unknown values of ߶ሺx, ߱ሻ and ߰ሺx, ߱ሻ are obtained and the dis-
placement and pressure fields are computed by means of Equations (11). Region F is between borders 
߲ଵܨ (N-elements) and ߲ଶܨ (K-elements). While, Region E is formed by ߲ଵܧ (N-elements) and ߲ଶܧ 
(M-elements), see Figure 2b. 

Thus, discrete form of Equation (17) can be expressed as: 
 

߰൫x, ߱൯∑ ,ி൫xܩ ,ࣈ ߱൯ΔΓேା
ୀଵ ൌ 0, for	 ݍ ൌ (22) .ܭ…1

 
Equation (18) can be written as: 

 
߶
	 ൫x, ߱൯∑ ܶ

	 ൫x, ,ࣈ ߱൯ேାெ
ୀଵ ΔΓ ൌ െݐ

 ൫x, ߱൯, 	for ݍ ൌ (23) ,ܯ…1
 
and Equation (19) as: 
 

ሺ߶
	 ൫x, ߱൯  ܩ

	 ൫x, ,ࣈ ߱൯ΔΓఐ

ேାெ

ୀଵ

ሻ݊ െ ߰൫x, ߱൯ 
,ி൫xܩ߲ ,ఠ൯ࣈ

߲݊

ேା

ୀଵ

ΔΓ ൌ 

െݑ
ಶ	

൫x, ߱൯, 	for ݍ ൌ 1…ܰ. 

(24)

 
Moreover, Equation (20) can be expressed as: 
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ሺ߶
	 ൫x, ߱൯  ܶ൫x, ,ࣈ ߱൯

ேାெ

ୀଵ

ΔΓఐሻ݊  ߰൫x, ߱൯  ,ி൫xܩ ,ࣈ ߱൯ΔΓ

ேା

ୀଵ

ൌ 

െݐ
ಶ	

൫x, ߱൯,			for		ݍ ൌ 1…ܰ, 

(25)

 

and Equation (21) as: 
 

൫߶
	 ൫x, ߱൯∑ ܶ൫x, ,ࣈ ߱൯

ேାெ
ୀଵ ΔΓఐ൯൫ߜ െ ݊ ݊൯ ൌ െݐఛ ൫x, ߱൯, 	for ݍ ൌ 1…ܰ. (26)

 

Equations (22) - (26) represent the system of integral equations of Fredholm type of second kind 
and zero order, which can be solved in frequency domain using Gaussian elimination method and the 
results in time domain are obtained by means of the Discrete Fourier Transform (DFT) algorithm. 
 
3.2 Application And Remarks of the Boundary Element Method 

In order to show the application of the method, the following chart (Figure 3) displays the process 
employed to calculate the seismic pressures at the locations mentioned in Section 5. Basically, the 
procedure considers the data input, models, locations, Green´s function calculations, forming the 
system of integral equations, solution and calculus of seismic pressures at the locations. The material 
properties can be seen in Table 1 and 2. The dimensionless frequency ߟ is defined in Section 4. 

Many papers have reported advantages and disadvantages about the capability of the application 
of BEM. One of the most important features of the BEM is that only the boundaries of the region 
need to be discretized, which leads to a reduce of the amount of elements. Another feature is that it 
can be used to efficiently solve problems with an infinite or semi-infinite domains and no fictitious 
boundary conditions need to be established at remote locations. However, some disadvantages of 
BEM are, for instance, the treatment of the singularities needs special mathematical and numerical 
techniques to deal with. Moreover, the fundamental solution of the governing equations could be 
difficult to obtain in some problems. 

In this work, the medium, in which the elastic waves propagate, is considered to be an elastic, 
isotropic and homogenous half space. This medium is divided into regions and is discretized using 
boundary elements (see Figure 2b). A very fine mesh (considering 6-boundary elements per S- wave-
length or higher values) permits having detailed geometries to be studied. In respect to the model 
size, only a finite part of the water and interfaces need to be modeled. Such truncation brings artificial 
perturbations produced by diffractions at the edges of the numerical model. Nevertheless, these per-
turbations are characterized by small amplitudes and their reflections inside the model are negligible. 
The simplest solution is to choose a surface length large enough that the fictitious perturbations fall 
outside of the observational space-time window. 

At the same time, the use of the Green`s functions for infinite spaces, expressed in terms of 
Hankel`s functions of second kind, is another advantage of our integral formulation. Green`s functions 
for a half space can be also used in problems where a free surface is present. But these functions are 
more complex than those for the infinite space and do not represent substantial reduction of compu-
tational requirements, despite, the discretization of the free water surface is unneeded. Then we be-
lieve that trade-off of surface discretization in conjunction with the infinite space Green`s functions 
can result in a more economical scheme. 
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Figure 3. Flow chart. Procedure to illustrate the application of the  

Boundary Element Method to calculate seismic pressures. 

 
4 VERIFICATION OF THE METHOD 

Seismic amplifications is a very relevant topic in the field of seismology and earthquake engineering. 
Particularly, local effects by topographies have been reported extensively. For example, Wong (1982) 
and Kawase (1988) studied the seismic amplifications by topographies, these topographies or inter-
faces were defined as a vacuum-elastic solid interface. On the other hand, our formulation can consider 
values of density and wave velocities corresponding to air or fluid. We have considered that air 
properties (e.g. air-elastic solid interface) generate similar responses or seismic amplifications similar 
to those obtained by Wong and Kawase. Given a configuration of a semi-circular canyon and using 
air properties we have obtained seismic amplifications at various points on the semi-circular canyon. 
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We define	η ൌ ன

ஒ
, as Wong and Kawase did, where "a" is the radius of the semi-circular canyon, ω 

is the circular frequency and β is the shear wave velocity of the elastic solid. If we consider η ൌ 2 
and	ν ൌ 0.33 (Poisson ratio) and plot the calculated seismic amplifications on the canyon semi-circular 
surface between െ2  ௫భ


 2 (see reference system in Figure 2a), our results are in good agreement 

with those obtained by Wong and Kawase. 
To reproduce those results, the incidence of P and SV-waves with an angle of γ ൌ 0° is employed. 

The elastic properties (ߚ ,ߙ and ߩ) used in this verification process are shown in Table 1. 
 

 હቀ
ܕ
ܛ
ቁ  ቀ

ܕ
ܛ
ቁ ૉ ൬

ܓ
 ൰ Observationsܕ

Air Bedford and  
Drumheller (1994) 

330 ------ 1.29 for verification only 

Elastic medium 
Wong (1982) 

 and Kawase (1988) 
1998 1000 2500 for verification only 

Table 1: Elastic properties for elastic and acoustic media used for verification.  
These parameters were used to reproduce the Wong´s and Kawase´s results. 

 
In Figure 4, our results are plotted with solid lines (horizontal component) and with dashed ones 

(vertical component). Circles correspond to Wong´s results, and squares to Kawase´s results. It is 
noteworthy that the largest seismic amplifications, for the vertical component, are present for the P-
waves incidence, showing values close to 2.8 at at ௫భ


ൌ െ2 and  ௫భ


ൌ 2. The lower amplifications are 

present at ௫భ

ൎ െ1,1. The amplifications associated to the horizontal component are always less than 

1 within the range of െ1  ௫భ

 1. In the case of SV waves, the largest seismic amplifications are 

observed for the horizontal component, reaching values of 2.9 at ௫భ

ൌ െ2.0	and ௫భ


ൌ 2.0. The vertical 

component presents values greater than 1 but less than 2 for the range of ௫భ

൏ െ1 and ௫భ


 1. In 

general, it is pointed out that a topography causes seismic amplifications near 3. 
 

 

Figure 4: Seismic amplification for a semicircular topography. Circles represent results obtained by  

Wong (1982) and squares by Kawase (1988). Results from the current formulation are plotted with  

dashed (vertical displacements) and solid lines (horizontal displacements). 
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5 SEISMIC PRESSURES FOR SEVERAL NUMERICAL MODELS  

Using the same elastic properties as in the previous case, the seismic pressure profiles for three lines (1 
to 3) for a simple seafloor configuration (see Figures 5e and 6e) have been calculated. Hereafter, the 
material properties (fluid and solid) are divided by the material properties of the solid in order to present 
dimensionless pressures in the plotted results. Water´s properties are: weight (1020 kg/m3) and wave 
velocity (1500 m/s2). Figures 5 and 6 show the pressure profiles for P- and SV-wave incidences with 
angles of γ ൌ 0°, 15° and 30°. Line 1 is located near the vertical cliff, lines 2 and 3 are located at a 
distance of Ha and 2Ha to the vertical cliff, respectively (see Figures 5e, 6e), where Ha is the water depth. 
Figure 5 shows the dependence of pressures with respect to frequency, in this case η ൌ 2. There are 
complex pressure patterns, which depend mainly on the line location and the incident wave type. For 
example, according to the pressures caused by the P wave incidence, the maximum pressure reached is 
less than 15 to a depth of	 

ுೌ
ൎ 0.12 (see Figure 5c, Line 1). In the case of γ ൌ 0°and 15°, Line 3 (dashed) 

reaches pressure values close to 14 near to a depth of 
ுೌ
ൎ 0.60	(see Figures 5a, b). 

 

 

Figure 5: Seismic pressure profile for a simple seabed configuration for η ൌ 2. The incidence  

of P- and SV-waves for γ ൌ 0°, γ ൌ 15° and γ ൌ 30° is considered. 

 
On the other hand, the incidence of SV-waves (see Figure 5d, e and f) also generates different 

pressure patterns. In this case, the greater pressures are present in Line 1, that is to say, the closest 
line to the vertical cliff, reaching values close to 10 for a depth about 

ுೌ
ൎ 0.20 (see Figure 5f), the 

maximum values correspond to incidence angles of γ ൌ 30°. That is to say, the SV wave incidence 
generates greater pressures near the vertical cliff. Figure 6 (η ൌ 4) leads to similar conclusions but 
reaching pressure values close to 40 for the P-waves (see Figure 6b) and up to 30 for SV waves (see 
Figure 6f, γ ൌ 30°). Again, the P-wave incidence generates greater pressures for more remote locations 
from the vertical cliff (see Line 3, Figure 6b and c). On the other hand, again the maximum pressures 
caused by SV- waves are present in locations close to vertical cliff (Line 1, Figure 6d, e, f). 
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Figure 6: Seismic pressure profile for a simple seabed configuration for η ൌ 4. The incidence  

of P- and SV-waves for γ ൌ 0°, γ ൌ 15° and γ ൌ 30° is considered. 

 
 

Figures 7 and 8 show the influence of a ramped sea floor configuration on the pressure field. The 
elastic properties are similar to those of the previous figures. We studied the P- and SV-waves inci-
dence with an incidence angle of γ ൌ 0°. For all these figures the pressures due to the incidence of P-
waves are plotted with a solid line and the corresponding to the SV waves with a dashed one. The 
ramp slopes are represented by θ, which takes the values of ߠ ൌ 30°, 45° and 60° (up, middle, and 
down figures). Again, the pressures are obtained for Lines 1, 2 and 3 (see details at the bottom of 
each figure). In these figures, one can notice a clear dependence of pressures with respect to the 
frequency (η ൌ 2 and 4). 

For η ൌ 2 (Figure 7), pressures can reach values less than 20 and it can be seen that the P-wave 
incidence causes greater pressures than SV-waves. Moreover, Line 3, in general, has the highest pres-
sures, reaching a value of 20 on the ocean floor for an angle ߠ ൌ 60° (Figure 7i). For η ൌ 4 (Figure 
8), more oscillations are present and normalized pressure values greater than those for η ൌ 2 are 
observed, this is due to the increase in frequency. In this case, the maximum normalized pressure 
values are 50 (see Figure 8f) and  40 (see Figures 8c and 8i) located on the seafloor. Once more, the 
P-wave incidence generates the greatest pressure field. 

Figures 4 to 8 have shown that incident wave type, frequency of analysis, configuration of the 
seafloor and  distance from shore have strong influence on the resulting pressure field. It can be seen 
that the greatest pressures are observed in the proximity of the seafloor. 
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Figure 7: Seismic pressure profile for a ramped seabed configuration for η ൌ 2. The normal incidence of P-  

and SV-waves is considered. Higher seismic pressures are observed at Line 3 in all cases. 

 
Influence of the sea floor´s soil properties on the pressure field 
In order to show the influence of the sea floor´s soil properties on the pressure field along the water 
depth, we include in this section several analyses considering different elastic properties of the seabed. 
Some authors have characterized the dynamic properties of media by considering the propagation 
velocities, which are also related to the Poisson´s ratio. Huerta et al. (2003) reported wave velocities 
in seabeds (Table 2). These materials and velocities are used to obtain the following results. 
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Figure 8: Seismic pressure profile for a simple seabed configuration for η ൌ 4. The normal incidence of P-  

and SV-waves is considered. Higher seismic pressures are observed at Line 3 in all cases. 

 
 

Material 
SV-wave  
velocity 

() (m/sec) 

Density (ૉ) 
(kg/m3) 

Poisson´s  
ratio 
(્) 

Reference 

1 3000 2100 0.25 
 

Huerta-Lopez 
et al. (2003) 

2 400 1700 0.35 

3 190 1400 0.40 

4 90 1300 0.45 

Table 2: Data used for the analysis of the influence of seafloor´s soil parameters on the pressure field in sea waters. 
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Figure 9 shows the pressure field obtained for the configuration shown in Figure 9b. In this 
example, normal P- and SV- wave incidence (γ ൌ 0°) is considered. Four types of materials for the 
seabed were modeled, which are shown in Table 2. The frequency analyzed is η ൌ 2. The pressures 
for each case are obtained for lines 1 to 3 (location of such lines is the same as in Figures 5 and 6, 
line 1 is located near the vertical cliff, lines 2 and 3 are located at a distance of Ha and 2Ha to the 
vertical cliff, respectively). The highest wave velocity (β ൌ 3000 m/s) of Material 1 can be associ-
ated with a high rigidity of the medium. This could be a relevant characteristic that distinguishes 
Material 1 from the other materials in Table 2. As shown in Figure 9a and 9b the values of the 
pressure field are lower for this material and, essentially the lines 1 to 3 have the same magnitudes 
and patterns. For the other three materials it may be inferred from the results, that the lower wave 
velocity β (i.e. Material 4) generates the greatest pressure field. This is observed for both P- and 
SV-wave incidences. For instance, Material 4 (see Figure 9g) reaches values of 37 on the seabed, 
for the incidence of P-waves. This value is lower for Material 3 and even less than for Material 2. 
In fact, for the SV-wave incidence a similar behavior is observed. The material with lower wave 
velocity (i.e. β ൌ 90 m/s) generates greater pressures. The maximum pressures are also found in 
the proximity of the seafloor and correspond to the material 4. It should be noted that the pressures 
obtained in lines 2 and 3 are almost negligible for the SV-wave incidence and for any material of 
the seafloor. In all cases, this figure shows null pressures at the water surface, as expected. There-
fore, it could be concluded that a material with higher wave propagation velocity generates a lower 
values of pressure field, according to the results shown in this figure. The difference between the 
maximum pressure values obtained for Material 1 is approximately 9 times lower than those ob-
tained for Material 4, for the P-wave incidence, and 2.5 times for the case of SV-waves. This result 
is relevant because the material type that of the seabed has direct implications on the pressure field 
obtained. 

Finally, Figures 10 and 11 present synthetic seismograms of calculated pressures at the receivers 
shown in Figures 10a and 11a. The material properties considered are the same as those for Figures 
4 to 7. To this end, we have used a Ricker pulse with the features, in frequency and time, as 
illustrated in Figures 10o, 10p, 11o and 11p. The Ricker pulse has a characteristic period of 0.77 
sec. For all the cases with h/Ha=1.0, null pressures are obtained (see Figures 10b, 10d and 10g). 
This result is consistent with the expected pressures on the water surface. In the right hand column 
of Figure 10 and 11, the results of pressures generated by the normal incidence of P- and SV-waves 
on a horizontal interface are displayed, respectively. These last curves are present as a reference. 

It should be noted that the patterns and amplitudes of the pressures generated by the P-wave 
incidence are similar for all cases, except for the seismograms of Figures 10i, 10k and 10l which 
show amplitudes slightly lower than the other seismograms. In the case of receivers close to the 
seafloor (h/Ha=0.0) it is noted that the calculated pressures are greater than for the other receivers. 
Moreover, in this figure it can be seen that the calculated pressures for Line 3 are similar to those 
obtained for the case of a horizontal interface of the seafloor. 
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Figure 9: Seismic pressure profile generated by the incidence of P- and SV-waves  

on the seabed. Four types of seabed materials are considered.  Material with the  

highest wave velocity (Material 1) shows the lowest pressure field and vice versa. 
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Figure 10: Synthetic seismograms of pressures for a ramped seabed configuration under the incidence of P-waves.  

The receivers, where the pressure fields are calculated, are indicated with triangles in the subplot a). 

 
On the other hand, the incidence of SV-waves on a ramped configuration (Figure 11) generates a 

different behavior from that caused by the P-waves. The right hand column of this figure shows that 
the normal SV-wave incidence (γ ൌ 0°) on a flat interface does not generate diffractions inside the 
water. In this regard, such incidence does not generate any pressure field.  Therefore, the pressures 
on Lines 1 to 3 are consequence of the diffractions of SV-waves, which are conferred to the ramped 
configuration of the seafloor. Additionally, it is noted that the greatest pressures are present on the 
seabed (i.e. h/Ha=0, Figure 11m). 
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Figure 11: Synthetic seismograms of pressures for a ramped seabed configuration under the incidence of SV-waves.  

The receivers, where the pressure fields are calculated, are indicated with triangles in the subplot a). 

 
6 CONCLUSIONS 

The contribution and novelty of the present work is the use of integral equations (solved numerically 
by the Boundary Element Method) to study the effects of seismic actions in offshore and onshore 
areas. This formulation can be considered as a numerical implementation of Huygens’ Principle in 
which the diffracted waves are constructed at the boundary from which they are radiated. Thus, 
mathematically it is fully equivalent to the classical Somigliana’s representation theorem. In addition, 
seismic pressures due to the configuration of the sea bottom are highlighted. Several seabed configu-
rations and materials are modelled to show seismic pressures along the water depth. Specific conclu-
sions are given below. 
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It has been found that the compressional waves (P-waves) can produce greater seismic pressures 
than the distortional waves (SV-waves). Moreover, P-wave incidences generate greater pressures in 
remote locations from vertical cliffs. On the other hand, the maximum pressures caused by SV-waves 
are present in locations close to vertical cliff. The difference between the maximum pressure values 
obtained for a material with shear wave velocity of  β ൌ 3000 m/s is approximately 9 times lower 
than those obtained for a material with a of β ൌ 90 m/s, for the P wave incidence, and 2.5 times for 
the case of SV-waves. This result is relevant because the seabed material type has direct implications 
on the pressure field obtained. Results in time domain suggest that the calculated pressures are similar 
to those obtained for a horizontal configuration of the seafloor, for the case of P-waves and for the 
analyzed configurations. That is to say that the seafloor configuration does not cause great diffractions 
of P-waves. While, the obtained pressures, when a normal SV-wave excites a ramped configuration, 
are consequence of the diffractions of SV-waves by the seabed configuration, only. Another relevant 
finding is that the highest seismic pressure due to an offshore earthquake is almost always located at 
the seafloor. 

The results obtained in this article could be used for the analysis and design of offshore structures. 
Applications such as the study of pressures on submarine pipelines, marine foundations, pressures on 
tension-leg platforms and on ships mooring systems could have practical interest. 
 
References 

Aki, K., Richards, P.G., (1980). Quantitative Seismology, W.H. Freeman, San Francisco. 

Avilés, J., Li, X., (2001). Hydrodynamic pressures on axisymmetric offshore structures considering seabed flexibility. 
Computers and Structures 79: 2595-2606. 

Baba, T., Takahashi, N., Kaneda, Y., (2013). A numerical study for relationship between coastal tsunami and bottom 
pressure fluctuation in the ocean generated from near-field earthquake, 2013 IEEE International Underwater Technol-
ogy Symposium, UT 2013, 2013, 2013 IEEE International Underwater Technology Symposium, UT 2013. 

Banerjee, P.K., Butterfield, R., (1981). Boundary Element Methods in engineering science. Mc.Graw Hill. London. 

Bedford, A., Drumheller, D.S., (1994). Introduction to elastic wave propagation: John Wiley & Sons, Chichester. 

Choi, Y., Nam, M.S., O'Neill, M.W., (2000). Response of open-ended piles in sand to simulated earthquake and sea-
quake. International Journal of Offshore and Polar Engineering 10:229-235. 

Dominguez, J., Gallego, R., (1996). Earthquake response of gravity dams including effects of porous sediments. Pro-
ceedings of Engineering Mechanics, v 2, p 649-652, 1996; Conference: Proceedings of the 1996 11th Conference on 
Engineering Mechanics. Part 1 (of 2), May 19, 1996 - May 22, 1996; Sponsor: ASCE; Publisher: ASCE. 

Higo, Y., (1997). Theoretical study on the effect of seaquakes on a two-dimensional floating body. Proceedings of the 
International Offshore and Polar Engineering Conference 4:480-484. 

Huerta-Lopez, C., Pulliam, J., Nakamura, Y., (2003). In Situ Evaluation of Shear-Wave Velocities in Seafloor Sedi-
ments with a Broadband Ocean-Bottom Seismograph. Bull. Seism. Soc. Am. 93:139-151. 

Hyodo, M., Yamamoto, S., Fukuda, K., Kamesaki, K., Yamauchi, Y., (2000). Behaviour of sand seabed underneath a 
gravity offshore structure subjected to ice load and seismic force. Proceedings of the International Offshore and Polar 
Engineering Conference, v 1, p 555-561, 2000; Conference: Proceeedings of the 10th International Offshore and Polar 
Engineering Conference, May 28, 2000 - June 2, 2000; Sponsor: ISOPE; Publisher: ISOPE. 

Jang, R.D., Higo, Y., (2004). A study on seaquake forces acting on floating body due to seaquake by three dimensional 
time domain analysis. Proceedings of the International Offshore and Polar Engineering Conference 492-496. 



N. Flores-Guzmán et al. / Seismic Pressures in Offshore Areas: Numerical Results     3083 

Latin American Journal of Solids and Structures 13 (2016) 3062-3084 

Jinsi, B.K., (1985). Offshore construction report/soil, seismic studies essential for (submarine pipe) lines in earthquake 
areas.  Oil and Gas 83:72-73. 

Karadeniz, H., (2007). Stochastic earthquake-analysis of underwater storage tanks. 26th ASME Offshore Mechanics 
and Arctic Engineering International Conference [OMAE2007] (San Diego, CA, 6/10-15/2007) Proceed, 2007; ISBN-
10: 0791837998. 

Kato, A., Iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S.I., Thurber, C., Tsumura, N., 
Yamaoka, K., Watanabe, T., Kunitomo, T., Yamazaki, F., Okubo, M., Suzuki, S., Hirata, N., (2010). Variations of 
fluid pressure within the subducting oceanic crust and slow earthquakes, Geophysical Research Letters 37, N 14. 

Kawase, H., (1988). Time-domain response of a semicircular canyon for incident SV, P, and Rayleigh waves calculated 
by the discrete wave number boundary element method. Bull. Seism. Soc. Am. 78:1415-1437. 

Kobayashi, H., Kawaguchi, H., (2000). Evaluation of seismic load on offshore structure in ice-covered waters. Proceed-
ings of the International Offshore and Polar Engineering Conference 1:674-678. 

Lee, J.H., Kim, J.K., (2015). Dynamic response analysis of a floating offshore structure subjected to the hydrodynamic 
pressures induced from seaquakes, Ocean Engineering 101:25-39. 

Li, W., Yeh, H., Hirata, K., Baba, T., (2009). Ocean-bottom pressure variations during the 2003 Tokachi-Oki earth-
quake, Selected Papers of the Symposium Held in Honor of Philip L-F Liu's 60th Birthday - Nonlinear Wave Dynamics, 
p 109-126, 2009, Selected Papers of the Symposium Held in Honor of Philip L-F Liu's 60th Birthday -Nonlinear Wave 
Dynamics. 

Lipa, B., Barrick, D., Saitoh, S.I., Ishikawa, Y., Awaji, T., Largier, J., Garfield, N., (2011). Japan tsunami current 
flows observed by HF radars on two continents. Remote Sensing 3:1663-1679. 

Mangano, G., D'Alessandro, A., D'Anna, G., (2011). Long term underwater monitoring of seismic areas: Design of an 
ocean bottom seismometer with hydrophone and its performance evaluation. OCEANS 2011 IEEE – Spain. 

Manolis, G.D., Beskos, D.E., (1988). Boundary Element Methods in Elastodynamics, Unwin Hyman, Londres. 

Matsumoto, H., Araki, E., Kawaguchi, K., Nishida, S., Kaneda, Y., (2014). Long-term features of quartz pressure 
gauges inferred from experimental and in-situ observations. OCEANS 2014 - TAIPEI, 4 pp., 2014; ISBN-13: 978-1-
4799-3646-5; DOI: 10.1109/OCEANS-TAIPEI.2014.6964447; Conference: OCEANS 2014 - TAIPEI, 7-10 April 2014, 
Taipei, Taiwan; Publisher: IEEE, Piscataway, NJ, USA. 

Matsumoto, H., Kawaguchi, K., Araki, E., (2015). Initial characteristics of pressure sensors, 2015 IEEE Underwater 
Technology, UT 2015, May 14, 2015. 

Pao, Y.H., Mow, C.C., (1973). Diffractions of Elastic Waves and Dynamic Stress Concentrations, New York, Crane 
Russak. 

Qian, Z.H., Yamanaka, H., (2012). An efficient approach for simulating seismoacoustic scattering due to an irregular 
fluid solid interface in multilayered media, Geophysical Journal International 189:524-540. 

Rodríguez-Castellanos A., Martínez-Calzada V., Rodríguez-Sánchez, J.E., Orozco-del-Castillo, M., Carbajal-Romero, 
M., (2014). Induced water pressure profiles due to seismic motions. Applied Ocean Research 47:9-16. 

Saito, T., Matsuzawa, T., Obara, K., Baba, T., (2010). Dispersive tsunami of the 2010 Chile earthquake recorded by 
the high-sampling-rate ocean-bottom pressure gauges, Geophysical Research Letters 37, N 23. 

Sasaki, K., Kawasoe, T., Fujisawa, T., (1986). Seabed sensors and their applications to earthquake prediction. Journal 
of the Institute of Electronics and Communication Engineers of Japan 69:842-845. 

Schanz, M., (2001). Application of 3D time domain boundary element formulation to wave propagation in poroelastic 
solids: Engineering Analysis with Boundary Elements 25:363-376. 

Sun, K., Nogami, T., (1991). Earthquake induced hydrodynamic pressure on axisymmetric offshore structures, Earth-
quake Engineering and Structural Dynamics 20: 429-440. 



3084     N. Flores-Guzmán et al. / Seismic Pressures in Offshore Areas: Numerical Results 

Latin American Journal of Solids and Structures 13 (2016) 3062-3084 

Takamura, H., Masuda, K., Maeda, H., Bessho, M., (2003). A study on the estimation of the seaquake response of a 
floating structure considering the characteristics of seismic wave propagation in the ground and the water. Journal of 
Marine Science and Technology 7:164-174. 

Towhata, I., Ghalandarzadeh, A., Sundarraj, K.P., Vargas-Monge, W., (1996). Dynamic failures of subsoils observed 
in waterfront areas. Soils and Foundations, in Special, 1996:149-160, Jan 1996; ISSN: 00380806; Publisher: Japanese 
Soc of Soil Mechanics & Foundation Engineering. 

Uwabe, T., Noda, S., Tsuchida, H., (1983). Coupled Hydrodynamic Response Characteristics And Water Pressures Of 
Large Composite Breakwaters. National Bureau of Standards, Special Publication, p 193-217, 1983; ISSN: 00831883; 
Conference: Wind and Seismic Effects, Proceedings of the 14th Joint Panel Conference of the US-Japan Cooperative 
Program in Natural Resources. Sponsor: NSF, Washington, DC, USA; Publisher: NBS. 

Wong, H.L., (1982). Effect of surface topography on the diffraction of P, SV; and Rayleigh waves. Bull. Seism. Soc. 
Am. 72:1167-1183. 

Zhang, L., Luan, X., (2013). Stability of submarine slopes in the northern South China Sea: a numerical approach. 
Chinese Journal of Oceanology and Limnology 31:146-58. 


