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Abstract 
This study has been undertaken to investigate the mechanical 
behavior of the capacitive microphone with clamped circular dia-
phragm using modified couple stress theory in comparison to the 
classical one. Presence of the length scale parameter in modified 
couple stress theory provides the means to evaluate the size effect 
on the microphone mechanical behavior. Investigating Pull-in 
phenomenon and dynamic behavior of the microphone are the 
matters provided due to the application of a step DC voltage. 
Also the effects of different air damping coefficients on dynamic 
pull-in voltage and pull-in time have been studied. The output 
level or sensitivity of the microphone has been studied by investi-
gating the frequency response in term of magnitude for different 
length scale parameters to figure out how the length scale param-
eter affects on the sensitivity of the capacitive microphone.  
To achieve these ends, the nonlinear differential equation of the 
circular diaphragm has been extracted using Kirchhoff thin plate 
theory. Then, a Step-by-Step Linearization Method (SSLM) has 
been used to escape from the nonlinearity of the differential equa-
tion. Afterwards, Galerkin-based reduced-order model has been 
applied to solve the obtained equation. 
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1 INTRODUCTION 

A microphone is an electro-acoustic transducer that converts the acoustic energy into electrical sig-
nals. The microphones are broadly utilized in voice communications devices, hearing aids, vibration 
control and surveillance military aims (Miao et al., 2002; Ma et al., 2002). Traditional microphones 
suffer from the disadvantages of high cost and large size. Therefore there is a further need to study 
on technology which can overcome these problems. 
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Micro-electro-mechanical technology defined as miniaturized mechanical and electro-mechanical 
elements is going to be more and more convenient in almost all fields of industries (Rezazadeh et 
al., 2010; Vahdat et al., 2011; Rezazadeh et al., 2012). However, its applications in electronics draw 
more attention, specifically. Microphones can be mainly categorized into dynamic, optical and ca-
pacitor (Suzuki et al., 2006). MEMS-based capacitive microphones are used where low power, low 
noise level, large band width and high sensitivity are the crucial requirements. In the case of MEMS 
capacitive microphones a diaphragm movement toward a ground plate is caused by the applied 
acoustic pressure on the diaphragm leading to a changing capacitance (Kwon et al., 2007). The 
sensing capacitance is calculated by integration of the diaphragm deflection in respect to the fixed 
ground-plate (Chen et al., 2008). The change in conductance produces a change in voltage needing 
to be amplified to obtain a measurable signal. 

By applying voltage across the two plates, attractive electrostatic and elastic restoring forces 
have been induced between them. Both forces are increased by raising voltage until the applied 
voltage is touched to a critical value, in which the diaphragm collapses on the fixed electrode which 
means pull-in happens (Batra et al., 2008). The critical voltage associated with this instability is 
called pull-in voltage (Batra et al., 2006). In some cases, delaying the onset of pull-in instability 
would be extremely desirable as it is considered as a limiting factor of the functional range of capac-
itive microphone. Accordingly in the design of electrostatically actuated MEMS microphones, cor-
nerstone is to evaluate the pull-in voltage accurately and adjust the electric load away from the 
pull-in instability (Abdel-Rahman et al., 2002). Many studies have delved into the pull-in phenom-
enon (Abdel-Rahman et al., 2002; Tilmans and Legtenberg, 1994). 

The acoustic sensitivity of the microphone has been described as the output voltage response to 
an acoustical pressure input (Raichel, 2000). To put it in another word, the mechanical sensitivity is 
defined as how much the deflection changes per sound pressure applying on the diaphragm (Scheep-
er et al., 1994). In respect of the same bias voltage and sound pressure, a microphone with a high 
sensitivity value has a higher output level and needs less preamplifier gain before the analog-to-
digital conversion compared to a microphone with a low sensitivity value. A microphone with high 
sensitivity would be suitable in far-field applications where there is a large distance from the source 
of sound to the microphone for instance conference phones and security cameras. Li et al. (2001) 
developed a MEMS capacitor microphone to raise the mechanical sensitivity over releasing the ini-
tial stress and diminishing the mechanical stiffness of the diaphragm over a deeply corrugated dia-
phragm. Also several investigations have looked into the mechanical behavior of MEMS micro-
phone; Quaegebeur and Chaigne (2008) studied effects of mechanical and electrical nonlinearity on 
the electroacoustical behavior of electrodynamic transducers. 

It is perceived from hybrid atomistic-continuum model and experimental results, there is a size 
effect in micron and sub-micron scales which has a key role in mechanical behavior of microstruc-
tures (Tsiatas, 2009). It maintains that the classical theory of elasticity does not touch the accurate 
and definite characterization of deformation occurrence due to not including Size effect. To over-
come this inadequacy and predict the accurate behaviors of microstructures, non-classical theories 
such as strain gradient theories (Lazopoulos, 2004; Lazopoulos, 2009) nonlocal elasticity theories 
(Eringen, 1983; Reddy, 2010) and couple stress theories (Toupin, 1962; Mindlin and Tiersten, 1962; 
Koiter, 1969; Yang et al., 2002) which take the size effect into consideration using length scale pa-
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rameters have been applied to develop the non-classical models. The classical couple stress theory 
was originated by the Cosserat brothers (1909), Toupin (1962), Mindlin and Tiersten (1962), and 
Koiter (1969) to delve into the size-dependent behavior of microstructures. They utilized two length 
scale parameters to capture the size effects. Yang et al. (2002) developed an additional equilibrium 
relation assuming the couple stress tensor to be symmetric. This work led to the number reduction 
of material length scale parameter from the two in classical couple stress theory to only one, estab-
lished in the modified couple stress theory (MCST). The two main advantageous which make the 
MCST more preferable over the classical couple stress theory are using only one length scale pa-
rameter besides Lame’s constants and symmetry of couple stress tensor (Park and Gao, 2006; Ma et 
al., 2008). The vast majority of the studies around the microphones are restricted to the classical 
theory (CT) which have not been associated with material length scale parameter therefore they 
may lead to the inaccurate predictions of the mechanical behavior. Accordingly, using non-classical 
theories is inevitable for approaching the more accurate mechanical behavior of these devices. 

This paper aims to carry out the instability behavior and the sensitivity of the capacitive mi-
crophone exposed to an electrostatic force based on the MCST for various material length scale 
parameters and compared with the CT. In addition the effect of various damping coefficients on 
dynamic behavior is investigated. The differential equations of microphone are formulated by a 
Kirchhoff thin plate theory applying MCST. A step‐by‐step linearization method (SSLM), and the 
Galerkin based reduced order model are used for evaluation of the mechanical behavior of micro-
phone. 
 
2 MECHANICAL MODEL AND GOVERNING EQUATIONS 

2.1 The Modeling of System 

 

 

Figure 1: Schematic illustration of the capacitive microphone with electrostatic actuation. 

 
A MEMS capacitive microphone generally can be viewed as two conductive circular micro plate 
with a voltage across them as illustrated in figure 1 The top plate is a thin deformable elastic plate 
with thickness  / 2 / ,( )2h h z h- £ £ radius  )(R R r R- £ £ , Poisson’s ratio n  and young's modu-

lus E  which is held fixed along its boundary and plays the role of diaphragm. According to low 
weight of the diaphragm, it can vibrate back and forth and produce energy. The lower plate of the 
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capacitor is fixed, rigid and thick with no movement introduces as the reference. These two plates 
are separated by a dielectric substance like air. 

Applying a DC voltage to microphone causes an electrostatic pull down force that can be repre-
sented as follows: 
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Where 0e  is the dielectric constant of the air, V  is the applied bias DC voltage, 0g  is the initial 

gap between the diaphragm and the back plate, t  is the time and ( , )w r q  is the deflection of the 

diaphragm. A change in the distance of upper and lower plates owing to electrostatic pull-down 
force leads to the capacitance value changing. Thus the structure acts as a variable capacitor. 

The air pressure changes constantly with time, but at a certain point of time it has an exact 
value. A sound pressure wave can be represented by a random time dependent mathematical func-
tion with a wide range of frequencies approximated by Fourier series as a combination of simple 
sinusoidal functions. In this paper, we consider a pure sinusoidal sound wave as the actuation source 
of the microphone as follows: 
 

0( ) ), si (ns sP t P tw w= (2) 
 

In which 0P  and sw  are the amplitude and frequency of the sound pressure wave, respectively. 

During the diaphragm oscillation normally to the substrate, the air gap is squeezed leading to a 
considerable change in the air volume. Owing to the viscous flow of air and so does the pressure 
changing, types of forces are come into existence. One is the restoring force known as air spring 
caused by the air compression. The total stiffness of the system is given by the rigidity of the dia-
phragm and the spring effect of the air gap. In the audio frequency range, the air gap spring coeffi-
cient is very low comparing to the diaphragm spring coefficient. Therefore, the air gap stiffness can 
be neglected (Esteves et al., 2011). The other one is damping force caused by the viscous flow of the 
air which is effective in the microphone operation, particularly in the high frequencies (Esteves et 
al., 2011). A circular plate damping coefficient is described as follows by analytically solving the 
Reynolds equation (Bao and Yeng, 2007). 
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Where S  is the plate area and g  is the air gap between the two plates and h  is the air viscosity in 

the ambient conditions. A simple model (Whelan and Hodgon, 1978) as / 3avh r l=   can determine 

the air viscosity in which ar  is the mass density of air, l  is the mean free path of the molecules 

and v  is the average velocity of the molecules. Based on experimental results, different amounts of 
the air viscosity are derived from ambient conditions including pressure and temperature. 

Also during the deflection, the diaphragm carries a certain amount of the fluid volume along it-
self. This entrained fluid is called added or virtual mass. On the subject of microphone, the virtual 
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mass and the inertia effect are often neglected since the displaced fluid mass is negligible (De Silva, 
2005). 
 
2.2 Modified Couple Stress Formulations 

With reference to the modified couple stress theory introduced by Yang et al. (2002), in an isotropic 
elastic material occupying a volume of W  bounded by the surface A , the strain energy density is a 
function of strain and gradient of the rotation vector as following: 
 

1
( ): :

2 ij ij ji jim ds e c
W

 = + Wò (4)

 

Where ijs  is the Cauchy (classical) stress tensor, ije  is the strain tensor, ijm  is the deviatoric part 

of the symmetric couple stress tensor, and χij  is the symmetric curvature tensor as given: 
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In which l  and m  are lame's constants, ijd  is the kronecker delta, iu  is the displacement vector,   

is a material inertial length‐scale parameter and the parameter iq  is the rotation vector defined as 

follow (Yang et al. 2002) 
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Where ijke  is the permutation symbol. 

 
2.3 Dynamic Model of a Micro-circular Diaphragm 

The relationship between the displacement components  ,( , z)u r q ,  ,( , z)v r q  and ,( , z)w r q  along the 

r , q  and z  directions, respectively, based on Kirchhoff thin plate theory can be written as (Sun 
and Tohmyoh, 2009) 
 

) )
) )

( , ( ,
u ( , ,       v ( , ,        ( ), , ( ),

w r w r
r z z r z z w r z w r

r r

q q
q q q q

q
¶ ¶

= - = - =
¶ ¶  

(7)

 

Assuming a two-dimensional formulation system by dropping the z  dependency the strain and 
curvature tensor are, respectively, described by: 
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By substituting of the Lamé constants with the modulus of elasticity E  and the Poisson’s ratio 
n  the stress tensor and the couple stress tensor take the following forms, respectively: 
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In which / 2(1 )G E n= +  is the shear modulus. 
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Where 3 2/ 12(1 )D Eh n= -  is the bending rigidity of the diaphragm 

and 2 2/ 2(1 )lD El h Gl hn= + =  is the contribution of rotation gradients to the bending rigidity. 

According to Hamilton’s principle, the actual motion diminishes the difference between the ki-
netic energy and total potential energy for a system with prescribed configurations at 0t =  to T  
as follows (Reddy, 2002): 
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Where k , P  and W  are the kinetic energy, the strain energy and the work of external loads of the 
micro plate, respectively. 

The strain energy density can be obtained from eqs. (4), (12) and (13) as follows: 
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Moreover, the first variation of the strain energy in the plate on the time interval [0, T] can be 
expressed as: 
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The work done by the external forces can be obtained as: 
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The first variations of the work on the time interval [0, T] is: 
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Total kinetic energy of the circular diaphragm is given by: 
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Where r  is the mass density of material. Applying / / 0u t v t¶ ¶ = ¶ ¶ =  the first variation of 

total kinetic energy of the plate on the time interval [0, T] takes the form: 
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Substituting Eqs. (16), (18) and (20) into Eq. (14), the governing equilibrium differential equa-
tion of motion of a circular micro plate becomes as: 
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Substituting Eqs. (12) and (13) into Eq. (21) the governing equation of the micro‐plate in terms 
of the deflection is given by: 
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Because it is assumed that the plate deflection is symmetrical with respect to circumferential 
coordinate / 0w q¶ ¶ =  , the deflection only depends on the radial position r. Therefore the opera-

tions 2  and 4  in polar coordinates system for the axisymmetric circular micro plate are ex-
pressed as: 
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Therefore for a circular micro plate actuated by electrostatic force and sound pressure wave 
considering an equivalent damping ratio, equation of motion takes the following form: 
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For convenience the below non-dimensional parameters are presented in order to rearrange the 
equation into dimensionless form: 
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3 NUMERICAL SOLUTION 

3.1 Nonlinear Equation of Static Deflection 

Due to the non-linearity of static deflection of the diaphragm subjected to an applied DC voltage, 
an analytical solution is complicated and time consuming. Therefore, SSLM is used (Rezazadeh et 
al., 2009) to linearize the static motion equation. 

Assuming that iw  is the diaphragm deflection due to applied DC voltage iV : 
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By increasing the applied DC voltage to: 
 

1i iV VV d+  + (29)
 

The displacement can be written as: 
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Rewriting Eq. (28) at the step of (i 1)+ , using the calculus of variation theory and Taylor ex-

pansion, neglecting the higher order terms of Taylor series, and subtracting the step (i)  from step 

(i 1)+ lead to the following linearized equation to calculate ( )̂ry : 
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( )̂ry  can be approximated by the function space in terms of basis function as follows: 
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Where )̂(m rf  is the shape function satisfying the boundary conditions and ma  are the unknown 

Coefficients evaluated using Galerkin Weighed Residual Method in each step.  
Substituting Eq. (32) into Eq. (31), multiplying by the weight function )̂(k rf  in Galerkin meth-

od and then integrating the result with respect to r over [0, 1], lead to a set of differential equation 
as follows: 
 

1

( )            1, ,
N

m kkm
m

a NK k N
=

= = ¼å (33)

 

In which 
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Repeating these steps leads to the deflection of the diaphragm to an applied electrostatic force. 
 
3.2 Nonlinear Equation of Dynamic Deflection 

Toward solving Eq. (26) numerically, a Galerkin based model can be used (Nayfeh and Mook, 
1979). The approximated solution for solving the dynamic equation of diaphragm deflection is pro-
posed as: 
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In which a linear combination of time ˆ ( )nb t  and shape function )̂(n rf  are used. The considered 

shape function satisfied all boundary conditions of the clamped circular diaphragm. 
Substituting Eq. (35) in Eq. (26) leads to following error function: 
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Based on Galerkin method: 
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Using the weight function (̂r)jf  similar to the shape function and applying Galerkin procedure 

to rE  lead to the following ordinary differential equation: 
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In which 
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4 NUMERICAL RESULTS AND DISCUSSION 

Owing to study the mechanical behavior of microphone including a clamped circular diaphragm 
with electrostatic actuation, we consider a case with the material and assigned geometrical proper-
ties as illustrated in table 1. 

In the case of circular diaphragm, the following shape function can be utilized satisfying all 
boundary conditions. 
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As noted before to evaluate the size effects, an intrinsic material length scale parameter must be 
incorporate into the constitutive equations. This paper is concerned with three different material 
length scale parameters as 0.1 mm , 0.47 mm and 0.73 mm . The   of 0.1 (Bin and Wanji, 2010) refers 

to a microphone with aluminum diaphragm (Ganji and Majlis, 2008) and the two other length scale 
parameters belong to a gold diaphragm microphones (Kim et al., 2007) with thickness of 0.5 and 
1μm respectively (Cao et al., 2007). 
 

Design variable Value 

R  (µm) 250 

0g  (µm) 3 

h  (µm) 1 

E (GPa) 169 
r  (Kg/m3) 2330 

0e  (F/m) 8.8541875*10-12 

n  0.3 

Table 1: Material properties and geometrical of the diaphragm. 

 
4.1 Stable Region of the Microphone to a DC Voltage 

Applying the bias DC voltage to a capacitive microphone reduces the stiffness of the diaphragm, 
causing the diaphragm to be deflected. By approaching the bias voltage to the static pull-in voltage, 
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the diaphragm becomes unstable for any initial condition and collapses on the substrate. Consider-
ing that this voltage limits the range of the applied DC voltage to the microphone the evaluation of 
static pull-in voltage is necessary. Figure 2 illustrates the diaphragm non-dimensional center deflec-
tion versus voltage using MCST for different length scale parameters. The calculated static pull-in 
voltage based on MCST is more than the one calculated by CT and increasing the length scale pa-
rameter leads to increment of the static pull-in voltage. Results imply that the static pull-in voltage 
of micron scale diaphragm is size dependent. Also the achieved pull-in voltage under the classical 
theory ( 0= ) is close to that calculated by Osterboerg (1995). 
 

 

Figure 2: The static pull-in variations based on modified couple stress theory for  

different length scale parameters in comparison to the classical theory. 

 
4.2 Dynamic Response of the Microphone to a Step DC Voltage (Vdc 0; P0=0) 

The threshold of the step DC voltage applied to the capacitive microphone is limited owing to the 
dynamic pull-in instability phenomenon. This critical voltage which is as low as 90-92% of static 
pull-in voltage introduced as dynamic pull-in voltage (Nayfeh et al., 2007). The dynamic motion 
equation is integrated using Runge-kutta fourth-order method by neglecting the sound pressure 
wave. 

Figures 3 and 4 depict the dynamic behavior of the diaphragm using MCST in comparison to 
CT, for a case without damping. The predicted results by the classical theory is almost equal to 
those predicted by applying MCST with a nanosized length scale parameter and increasing the 
length scale parameter makes the more differences between MCST and CT. 
 



S. Dowlati et al. / An Accurate Study on Capacitive Microphone with Circular Diaphragm Using a Higher Order Elasticity Theory     603 

Latin American Journal of Solids and Structures 13 (2016) 590-609 

 

Figure 3: Phase portrait of the diaphragm using modified couple stress theory for  

different length scale parameters in comparison to the classical theory. 

 

 

Figure 4: Time history of the diaphragm using modified couple stress theory for  

different length scale parameters in comparison to the classical theory. 

 
Figures 5 and 6 illustrate the phase portrait and dynamic pull-in variations for different damping 
coefficients using MCST for 0.47 mm=  in comparison to CT. The small damping ratio refers to 

the case of larger gap and the lower air viscosity which can be even neglected. Under both theories, 
increment of the damping coefficient to a critical value causes the dynamic pull-in voltage converges 
to the static pull-in voltage. As depicted in figure 6, the non-dimensional pull-in time increases by 
increment of damping ratio. Diminishing the air gap and increasing the air viscosity and plate radi-
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us may result in higher damping ratio which causes inappropriate and impractical conditions of 
using microphone. 

Figure 7 shows pull-in time over the applied voltage for various length-scale parameters. Also 
figure 8 depicts the pull-in time over a range of length-scale parameters. As the length-scale param-
eter increases, the pull-in time decreases. 
 

 

Figure 5: Phase portrait of the diaphragm using modified couple stress theory (ℓ=0.47 ߤm) for  

different damping coefficients in comparison to the classical theory. 

 

 

Figure 6: Dynamic pull-in variations of the diaphragm using modified couple stress theory (ℓ=0.47 ߤm) for  

different damping coefficients in comparison to the classical theory. 
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Figure 7: Pull-in time of the diaphragm subjected to the actuating step DC voltage for  

different length scale parameters in comparison to the classical theory. 

 

 

Figure 8: Pull-in time of the diaphragm subjected to the actuating step  

DC voltage for different length scale parameters. 

 
4.3 Sensitivity (Frequency Response) 

Figure 9 represents frequency response in term of magnitude in absence of electrostatic force apply-
ing MCST for different length-scale parameters. Increasing the length-scale parameter leads to the 
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less deflection and the more fundamental frequency. As a result of that the sensitivity in output 
voltage terms decreases. 

As can be seen in figure 10 by increasing the bias DC voltage under constant sound pressure, 
the deflection increases, So does the sensitivity. In addition, it is evident that the higher bias DC 
voltages create the lower fundamental frequency which leads to the limitation in the upper band of 
the frequency response.  
 

 

Figure 9: Frequency response of the diaphragm based on modified couple stress theory for  

different length scale parameters in comparison to the classical theory. 

 

 

Figure 10: Frequency response of the diaphragm for various bias voltages under  

modified couple stress theory (ℓ=0.47ߤm). 
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5 CONCLUSIONS 

This paper studied the size dependent behavior of the capacitive microphone with circular dia-
phragm using MCST. The numerical results show that the pull-in voltage calculated by modified 
couple stress theory is more than that calculated by the classical one. It was shown that considering 
the air damping, the dynamic pull-in voltage escapes from that of obtained by ignoring the damping 
force and rising damping coefficient has caused the dynamic pull-in voltage to converge to the static 
pull-in voltage. Also as the length-scale parameter is increased the pull-in time is decreased. Moreo-
ver, it is interpreted that under the same condition (the same sound pressure and the same bias 
voltage) the deflection estimated by the proposed theory is smaller than that by the classical theo-
ry. Consequently, the MCST predicts the less output voltage or the less sensitivity in comparison to 
CT. According to the results, by increasing electrostatic force, the diaphragm deflection is increased 
and the fundamental frequency is decreased. Therefore, the sensitivity is increased. 

The main conclusion to be drawn from this paper is that using the classical theory for diaphragms 
with considerable material length scale parameter may return inaccurate results and mechanical be-
havior of the capacitive microphones should be study under modified couple stress theory. 
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