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Abstract 
In this paper, continuous and discontinuous cases of a contact 
problem for two elastic layers supported by a Winkler foundation 
are analyzed using both analytical method and finite element 
method. In the analyses, it is assumed that all surfaces are fric-
tionless, and only compressive normal tractions can be transmitted 
through the contact areas. Moreover, body forces are taken into 
consideration only for layers. Firstly, the problem is solved analyt-
ically using theory of elasticity and integral transform techniques. 
Then, the finite element analysis of the problem is carried out 
using ANSYS software program. Initial separation distances be-
tween layers for continuous contact case and the size of the sepa-
ration areas for discontinuous contact case are obtained for vari-
ous dimensionless quantities using both solutions. In addition, the 
normalized contact pressure distributions are calculated for both 
cases. The analytical results are verified by comparison with finite 
element results. Finally, conclusions are presented. 
 
Keywords 
Continuous contact, discontinuous contact, finite element method, 
initial separation distance. 
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1 INTRODUCTION 

Since contact problems have different application areas in structural mechanics such as railways, 
foundation grillages, rolling mills, pavements of highway and airfield etc. (see, for example, Garrido 
and Lorenzana, 1998; Comez et al., 2004; Kahya et al. 2007), there has been an increasing attention 
on the contact problems. There is a large body of literature associated with contact problems both 
analytically (Keer et al., 1972; Weitsman, 1972; Ratwani and Erdogan, 1973; Gladwell, 1976; 
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Civelek et al., 1978; Geçit, 1986; Nowell and Hills, 1988; Porter and Hills, 2002) and numerically 
(Chan and Tuba, 1971; Francavilla and Zienkiewicz, 1975; Jing and Liao, 1990; Garrido et al., 
1991).  

Apart from these papers, Abdou and Salama (2004) studied the Fredholm integral equation of 
the second kind which obtained from the three-dimensional contact problem in the theory of elastic-
ity with a generalized potential kernel. Haslingera and Vlachb (2006) analyzed discrete contact 
problems with Columb friction and found a solution dependent to coefficient of friction. El-Borgi et 
al. (2006) considered the plane problem of a receding contact between a functionally graded elastic 
layer and a homogeneous half-space when the two bodies were pressed together. A weighted residu-
al relationship for the contact problem with Coulomb friction was carried out by Le van and Ngu-
yen (2009).  
 Comez (2010) investigated frictional contact problem for a rigid cylindrical stamp and an elastic 
layer resting on a half plane. The axisymmetric problem of a frictionless double receding contact 
between a rigid stamp of axisymmetric profile, a functionally graded elastic layer and a homogene-
ous half space was studied by Rhimi et al. (2011). Zhang et al. (2012) reported a finite element 
model for 2D elastic-plastic contact analysis of multiple cosserat materials. Long and Wang (2013) 
investigated effects of surface tension on axisymmetric Hertzian contact problem. Yang (2013) stud-
ied solutions of dissimilar material contact problems. Chidlow and Teodorescu (2013) examined the 
frictionless two-dimensional contact problem of an inhomogeneously elastic material under a rigid 
punch. Zozulya (2013) presented comparative study of time and frequency domain BEM approaches 
in frictional contact problem for antiplane crack under harmonic loading. Öner and Birinci (2014) 
solved continuous contact problem for two elastic layers resting on an elastic half-infinite plane. A 
quadratic meshless boundary element formulation for isotropic damage analysis of contact problems 
with friction was examined by Gun (2014). An axisymmetric Hertzian contact problem of a rigid 
sphere pressing into an elastic half-space under cyclic loading was investigated by Kim and Jang 
(2014). A theoretical model of a frictional sliding contact problem for monoclinic piezoelectric mate-
rials under triangular and cylindrical punches was studied out by Zhou and Lee (2014).  

When the literature is researched, it can be seen that there are not enough studies about contact 
problems with regard to existing body forces. Additionally, in the existing literature, although there 
are extensive studies on solution of contact problems both analytically and numerically, comparison 
of these methods in contact mechanics has not been explored completely. So, the aim of this paper 
is to present a comparative study of continuous and discontinuous cases of a contact problem using 
analytical method and FEM. In the following sections, firstly, the analytical solution of the problem 
is investigated. Secondly, the finite element analysis of the problem is examined. Then these two 
methods are compared to each other using various numerical problems. Finally conclusions are giv-
en. 

 
2 ANALYTICAL SOLUTION OF THE PROBLEM 

Consider the plane-strain contact problem (symmetric with respect to the y-axis) entailing two elas-
tic layers supported by a Winkler foundation as shown in Figures (1a) and (1b). Layers are iso-
tropic, homogeneous and linearly elastic. Symmetrical distributed load whose length 2a is subjected 
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to Layer 2. In the analyses, it is assumed that all surfaces are frictionless, and only normal tractions 
can be transmitted across the contact surfaces. Since every material has a weight in nature and 
including body forces approaches the solution to reality, body forces of the elastic layers are taken 
into account. Including body forces also converts the type of the problem from receding contact to 
continuous or discontinuous contact problem. Due to symmetry about y-axis, it is sufficient to con-
sider only one-half of the problem geometry. Where applicable, the germane quantities are reckoned 
per unit length in the z- direction. Analytical solution of the problem is obtained using theory of 
elasticity and integral transform technique. 

In the absence of body forces, the stress and the displacement components for Layer 1 and Layer 
2 may be obtained as (Birinci and Erdol, 2003) 

 

     y y
ih i i i i
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u x, y A B y e C D y e sin x d


                  (1) 

   y yi i
ih i i i i

0

2
v x, y A B y e C D y e cos x d


 

                                                  
  (2) 

       y yi i
ixh i i i i i i

i 0

3 31 2
x,y A By B e C Dy D e cos x d

2 2 2


 

                                                    
  (3) 

       y yi i
iyh i i i i i i

i 0

1 11 2
x,y A By B e C Dy D e cos x d

2 2 2


 

                                                   
  (4) 

       y yi i
ixyh i i i i i i

i 0

1 11 2
x,y A By B e C Dy D e sin x d

2 2 2


 

                                                      
  (5) 

 
where subscript h indicates the case without body forces. u=u(x,y) and v=v(x,y) are the x- and y- 
components of the displacement vector, respectively. x(x,y) , y(x,y)  and xy(x,y)  are the stress 

components of the layers. i  is an elastic constant and equals  i i3 4     for plane strain, i  is 

shear modulus, i  is Poisson’s ratio (i=1,2). The subscripts 1 and 2 refer to the Layer 1 and Layer 
2, respectively.  Ai, Bi, Ci and Di (i=1, 2) are unknown coefficients which will be determined from 
boundary conditions of the problem. 

For the case in which body forces exist, the particular parts of y  stress components for Lay-

er 1 and Layer 2 are obtained as (Birinci and Erdol, 2003) 
 

1yp 2 2 1 1(y) gh g(y h )       (6) 



1774      A. Birinci et al. / Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM 

Latin American Journal of Solids and Structures 12 (2015) 1771-1789 
 

2yp 2(y) g(y h)     (7) 

where 1g, and 2 are gravity acceleration, mass density of Layer 1 and mass density of Layer 2, 

respectively. Total field of displacements and stresses can be consequently written as 

iy iyh iyp      (8) 

 
2.1 Continuous Contact Case 

 
 

Figure 1a: Geometry of the problem related to continuous contact case. 
 

If load factor defined as 
2 2

p(x)

gh
 


 is sufficiently small, then the contact between elastic layers, 

y=h1, 0<x<∞ , will be continuous, and Ai, Bi, Ci and Di (i=1,2) must be determined from the fol-
lowing boundary conditions:                                   

  

   2xy x,h 0 0 x     (9) 

   2xy 1x,h 0 0 x     (10) 

   1xy 1x,h 0 0 x     (11) 

   1xy x,0 0 0 x     (12) 
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     1y 1 2y 1x,h x,h 0 x      (13) 

     
 2y

p x 0 x a
x,h

0 a x
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 (14) 

1y 0 1(x,0) k v (x,0) (0 x )     (15) 

     2 1 1 1v x, h v x,h 0 0 x
x

        
 (16) 

 
where 0k  is the stiffness of  the Winkler foundation. By making use of boundary conditions (9-16), 
unknown Ai, Bi, Ci and Di (i=1,2) constants can be determined. By substituting these constants 
into Eq. (8), after some simple manipulations, one may obtain the contact pressure along the inter-
face 1y h  as (Birinci and Erdol, 2003) 
 

1hj h
y 1 2 2 2

0

1

P4
(x,h ) gh (1 ) e e Y1( )[4 Y2( )

( )

k(1 )Y3( )]cos( x)d


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  
    

  (17) 

 
where  

j
0

P p(x)cos( x)dx,


    (j=1,2,3) (18) 

2 1 2 1 2

22
1 1 1

1

( ) Y4( )[ 4 (1 )Y2( ) k(1 )Y3( )]

Y5( )[4 (1 )Y3( ) k(1 2 )Y6( )]

             


         


 (19) 

1 12 h 2 h2 h 2 h
1Y1( ) e e ( h h )(e e )              (20a) 

1 12 h 2 h2 2
1Y2( ) 1 e (2 4 h e )          (20b) 

1 12 h 2 h
1Y3( ) 1 e (4 h e )       (20c) 
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1 14 h 2 h4 h 2 h
1Y4( ) e e 2e e (2 h 2 h )              (20d) 

1 14 h 2 h4 h 2 h 2 2 2 2 2
1 1Y5( ) e e e e (2 4 h 4 h 8 hh )                 (20e) 

1 12 h 2 hY6( ) 1 e (2 e )      (20f) 

0

1

k
k 


 (21) 

 
In this study, three different loading cases are considered. For each loading case, jP  (j=1,2,3) can 

be determined as 
 
 Case 1: 0p(x) p constant    

0
1

p
P sin( a) 


 (22) 

 Case 2: 
2

0 2

x
p(x) p (1 )

a
    

0
2 3 2

2p
P sin( a) a cos( a)

a
      

 (23) 

 Case 3: 
0

x
p(x) p (1 )

a
    

0
3 2

p
P 1 cos( a)

a
     

 (24) 

 
Equating y 1(x,h )  in Eq. (17) to zero after replacing 1h, r h / h  , the expression in which 

crx  (initial separation distance) will be obtained can be written as  
 

j r
2 1

cr 0

f ( ,a / h)1 4 x
(1 ) e e Y1( , r)[4 Y2( , r) k(1 )Y3( , r)]cos( )d

( , r) h h


 

 
        

     (25) 

 
where jf  equals to corresponding loading jP  (j=1,2,3) given in Eqs. (22-24), cr is critical load fac-

tor and it can be written as 
 



     A. Birinci et al. / Analysis of Continuous and Discontinuous Cases of a Contact Problem Using Analytical Method and FEM    1777 

Latin American Journal of Solids and Structures 12 (2015) 1771-1789 
 

cr
cr

2 2

p

gh
 


 (26) 

 
After substituting jf ( ,a / h)  (j=1,2,3) values into Eq. (25) and solving the integral numerically, xcr 

values, for which initial separation takes place may be obtained for various dimensionless quantities. 
 

2.2 Discontinuous Contact Case 

 
 

Figure 1b: Geometry of the problem related to discontinuous contact case. 
 
 

Since the interface can’t carry tensile tractions for cr   , there will be a separation between the 
elastic layers in the neighborhood of crx x on the contact plane 

1y h . Assuming that the sepa-
ration region is described by b x c   and 

1y h , boundary conditions for the discontinuous 
contact case are as follows 

   2xy x,0 0 0 x     (27) 

   2xy 1x,h 0 0 x     (28) 

   1xy 1x,h 0 0 x     (29) 

   1xy x,0 0 0 x     (30) 
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     1y 1 2y 1x,h x,h 0 x      (31) 

     
 2y

p x 0 x a
x,h

0 a x

              
 (32) 

 1y 0 1(x,0) k v (x, 0) 0 x      (33) 

   y 1x,h 0 b x c     (34) 

     2 1 1 1v x,h v x, h (x) b x c
x

        
 (35) 

 
where b and c are unknowns, and functions of   . Note that the unknown function (x)  in Eq. 
(35) may be replaced by 

(x) 0, (0 x b, c x )        (36) 

and   
c

b

(x)dx 0   (37) 
 

Utilizing the boundary conditions (27-33) and (35), the new constants Ai, Bi, Ci and Di (i=1,2) 
which appear in Eqs. (1-5) may be obtained in terms of the unknown function (x) . Then, Eq. (34) 
gives the following singular integral equation which (x) is the unknown function: 
 

c
1

1 2
1 2 2 b

4 1 1 1 1 4
k (x, t) (t)dt k (x) 1

(1 ) gh (1 m) t x t x

                
  (38) 

 
where 
 

 
1 2 1

0

1 1
k (x, t) 1 (1 ) 4 Y2( ) k(1 )Y3( ) Y5( ) 1

( ) m

* sin (t x) sin (t x) d

                           
              

  (39) 

1hhi
2 2 1

0

P
k (x) e e (1 )Y1( ) 4 Y2( ) k(1 )Y3( ) cos( x)d

( )




                    
  (40) 
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1 2

2 1

1
m

1

  


 
 (41) 

One may notice that because of the smooth contact at the end points b and c, the function (x)

equals zero at the ends and the index of the integral Eq. (38) is equal to -1 (Erdogan and Gupta, 
1972). The consistency condition of the integral Eq. (38) defined as  
 

c
1c

1
1 2 2 b

1/2
b

2

4 1 1 1 1
k (x, t) (t)dt dx(1 ) gh (1 m) t x t x 0

4 (x b)(c x)1 k (x)

                                      


  (42) 

 
Defining the following dimensionless quantities, 
 

2t c b

c b c b


  

 
 (43) 

2x c b

c b c b


  

 
 (44) 

1

1 2 2

4
g( ) (t)

(1 ) gh


  

  
 (45) 

 
and substituting Eqs. (43-45) into the integral Eq. (38), the single-value condition (37), and the 
consistency condition (42), the following equations are obtained: 
 

1
* *

1 2
1

1 1 1 1 c b 4
k ( , ) g( )d k ( ) 1

1 m c b 2h
2

c b


 
 
 

          
     

  
  

  (46) 

1

1

g( )d 0


    (47) 

1 1
* *

2 12 1/2
1 1

d 4 1 1 1 c b
1 k ( ) k ( , )g( )d 0

1 m c b 2h(1 ) 2
c b

 

                                       

   (48) 
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where 
* *

1 1k ( , ) k (x, t)    and * *
2 2k ( ) k (x)                                                                          (49a-49b) 

 
and in which 
 

*
1 2 1

0

1 1
k (x, t) 1 (1 ) 4 Y2( , r) k(1 )Y3( ,r) Y5( ,r) 1

( , r) m h

* sin (t x) sin (t x) d
h h

                           
                       


 (50) 

,ri
2

*
2

0
1

f ( ,a / h)
e e (1 )Y1( , r)

x( , r)k (x) cos( )d
h

* 4 Y2( , r) k(1 )Y3( ,r)
h

 


                          

  (51) 

 
To insure smooth contact at the end points of the separation area, let 
 

2 1/2g( ) G( )(1 ) , ( 1 1)          (52) 

Using the appropriate Gauss-Chebyshev integration formula (Erdogan and Gupta), Eqs. (46) and 
(47) become 
 

2n
k j *k k j k 2 j

k 1
*

1 j k

1 1

c b1 1 42 G( ) k ( ) 1 (j 1,...,n 1)c bn 1 1 m
c b

k ( , )
2h



                                           

  (53) 

2n
k

k
k 1

1
G( ) 0

n 1


 

  (54) 

 

where 
 

k
k

cos( ) (k 1,..., n)
n 1


  


 (55) 

j
2j 1

cos( ) (j 1,...,n 1)
2 n 1
 

   


 (56) 
 

Eqs. (53) and (54) give (n+2) equations in order to determine (n+2) unknowns namely kG( ) , 
(k 1,...,n) ,b and c. However, since the equations are nonlinear in b and c, an iterative scheme has 
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to be used in order to obtain these unknowns.  In this iterative procedure, firstly (n) equations 
[j=1,…,(n/2),(n/2+2),…,(n+1)] are chosen from Eq. (53) and the remaining one [j=n/2+1] is kept 
as the stopping criteria along with single-value condition (54).  

After predicting values for b and c, kG( )  are calculated using previously determined (n) equa-
tions. If the chosen b and c and obtained kG( )  values ensure the stopping criteria equations, the 
solution would have been found. Otherwise, kG( )  values are recalculated after predicting new b 
and c values.  

Note that the consistency condition of the integral equation such as (48) is automatically satis-
fied. Also, Eq. (38) gives the stress y 1(x,h )  outside as well as inside the separation region (b,c). 

Thus, once the unknowns kG( ) , b and c are determined, the contact pressure may be easily evalu-
ated for the discontinuous contact case. 

  
3 FINITE ELEMENT ANALYSIS OF THE PROBLEM 

In this section, the problem has been studied by the finite element method (FEM) using a commer-
cial package program ANSYS. ANSYS Multiphysics is a powerful interactive environment for mod-
eling and solving all kinds of scientific and engineering problems based on partial differential equa-
tions (PDEs). To solve the PDEs, ANSYS Multiphysics uses the proven finite element method 
(FEM). The software runs the finite element analysis together with adaptive meshing and error 
control using a variety of numerical solvers (Biswas and Banerjee, 2013). 

The problem is considered as a two-dimensional contact problem and the material of the layers 
are assumed elastic and isotropic. The physical system under consideration exhibits symmetry in 
geometry, material properties and loading. Due to the symmetry of the problem, only one half of 
the geometry of the problem is to be modeled. The geometry and the applied load are shown sche-
matically in Fig. 2 and Finite Element model of the problem before analysis is shown in Fig. 3. In 
the study, two dimensional solid elements (PLANE 183) are used to model the layers. The PLANE 
183 element is defined by six nodes having two degrees of freedom at each node: translations in the 
nodal x and y directions. The element may be used as a plane element (plane stress, plane strain 
and generalized plane strain). Winkler foundation is modelled by linear spring element (COMBIN 
14). The COMBIN14 element or the longitudinal element spring-damper option is a uniaxial ten-
sion-compression element with up to two degrees of freedom at each node: translations in the nodal 
x and y directions. No bending or torsion is considered. If damping is neglected, the spring element 
will simply represent the linear Winkler model of one parameter which is the simple model to repre-
sent soil (Al- Azzawi et al., 2010). 

The contact region is meshed by Surface-to-Surface CONTA172 and TARGE169 contact ele-
ments. CONTA172 is used to represent that of the mechanical contact analysis. The target surface, 
defined by TARGE169, was therefore used to represent 2-D ‘‘target’’ surfaces for the associated 
contact elements CONTA172. Plane strain finite elements are used for the meshing of the entire 
geometry. Frictionless surface-to-surface contact elements are used to model the interaction between 
the contact surfaces and Augmented Lagrangian method is used as the contact algorithm. 
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        Figure 2: The geometry of the problem for finite element analysis. 

 

 
Figure 3: Finite element model of the problem before analysis. 

 
4 COMPARISON AND VERIFICATION OF ANALYTICAL AND FINITE ELEMENT APPROACHES 

In this section, by using the described methods in the previous sections, initial separation distances 
between layers for continuous contact case, the size of the separation areas for discontinuous con-
tact case, and the normalized contact pressure distributions for both contact cases are given for 
various dimensionless quantities such as 0 1k k /  , 2 1/   , 1h / h  and   . Additionally, the re-
sults obtained using FEM have been compared and verified with analytical results. 
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The effects of 2 1/  and 0 1k k /  on the initial separation distance for continuous contact 
case are presented in Table 1. It demonstrates that the initial separation distance increases with 
increasing of 2 1/  . This means that as Layer 2 becomes more rigid compared to Layer 1, the 
initial separation occurs at a more distant point from the axis of symmetry. Moreover, increasing 
stiffness of the Winkler foundation ( 0 1k k /  ) reduces the value of initial separation distance crx  

and the initial separation occurs at a point closer to the axis of symmetry. As 0 1k k /   increases, 
the change of initial separation distance crx  dwindles away and crx  approaches to a constant val-
ue.  
 

 
k
  

2
1

0.575
   

 
2

1
1

   
 

2
1

1.74
   

crx
h  

 crx
h  

 crx
h  

Analytical FEM Error (%)  Analytical FEM Error (%)  Analytical FEM Error (%) 

0.01 6.7840 6.750 0.50  7.1842 7.125 0.82  7.7506 7.750 0.01 

0.05 4.6646 4.700 0.76  4.9258 4.875 1.03  5.2968 5.300 0.06 

0.1 4.0054 4.000 0.14  4.2210 4.250 0.69  4.5282 4.500 0.62 

0.5 2.9086 2.900 0.30  3.0530 3.050 0.10  3.2510 3.250 0.03 

1 2.5474 2.550 0.10  2.7010 2.700 0.04  2.8770 2.875 0.07 

2 2.2408 2.250 0.41  2.4182 2.400 0.75  2.5872 2.575 0.47 

5 2.0174 2.000 0.86  2.1700 2.150 0.92  2.3254 2.300 1.09 

10 1.9418 1.950 0.42  2.0684 2.050 0.89  2.2088 2.200 0.40 

50 1.8770 1.875 0.11  1.977 2.000 1.16  2.0972 2.100 0.13 

100 1.8682 1.865 0.17  1.9646 1.975 0.53  2.0818 2.075 0.33 

 1.8594 1.850 0.51  1.9520 1.950 0.10  2.0658 2.050 0.76 
 

Table 1: Variation of the initial separation distance crx  with 2 1/   for various 
values of 0 1k k /    ( a / h 1, 1h / h 0.5,  0p(x) p ). 

 
Figure 4 illustrates that the effect of stiffness of the Winkler foundation on the normalized contact 
pressure between layers for continuous contact case. The results of this figure reveal that maximum 
normalized contact pressure occurs at the axis of symmetry and maximum normalized contact pres-
sure and initial separation distance decrease with increasing of 0 1k k /  .  Table 2 depicts that 

the effect of different loading cases on the initial separation distance cr
x . Examination of Table 2 

indicates that maximum initial separation distance is obtained from loading case 1 [ 0
p(x) p

=constant].  
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Figure 4: Effect of stiffness of the Winkler foundation on the normalized contact pressure between layers 
for continuous contact case ( a / h 2, 2 1/ 0.75,   1h / h 0.6,  0p(x) p ). 

 
 
 

p(x)
  crx

h  

 Analytical FEM Error (%) 

0p  3.34 3.35 0.30 

2 2
0p (1 x a )  2.86 2.85 0.35 

0p (1 x a)  2.76 2.75 0.36 

  
Table 2: Effect of different loading cases on the initial separation 

distance crx ( a / h 2, 2 1/ 0.75,    1h / h 0.6) . 
 
 


y(x

,h
1)/
 

gh
2



     A. Birinci et al. / Analysis of Continuous and Discontinuous Cases of a Contact Problem Using Analytical Method and FEM    1785 

Latin American Journal of Solids and Structures 12 (2015) 1771-1789 
 

Fig. 5 presents the effect of different loading cases on the normalized contact pressure between lay-
ers for continuous contact case. As seen in Fig. 6, Maximum normalized contact pressure between 

layers is obtained from loading case 3 [
0

x
p(x) p (1 )

a
  ]. 

 

 
 

Figure 5: Effect of different loading cases on the normalized contact pressure between layers 
for continuous contact case ( a / h 2, 2 1/ 0.75,   1h / h 0.6 ). 

 
Tables 3 and 4 show the influence of 1h / h  on separation distances (b and c)  for different loading 

cases in the case of discontinuous contact. It can be concluded from Tables 3 and 4 that increasing 
the value of 1h / h results in a decrease of separation distances (b and c)  between the layers for 

both loading cases [ 0p(x) p [1 (x /a)]   and 0p(x) p ]. 
 

1h h

  
b h   c h   (c b) h  

Analytical FEM Error (%)  Analytical FEM Error (%)  Analytical FEM Error (%) 

0.30 1.5525 1.56 0.48  2.6712 2.68 0.33  1.1187 1.12 0.12 
0.40 1.4919 1.48 0.80  2.4794 2.48 0.02  0.9875 1 1.26 
0.50 1.4366 1.43 0.46  2.2312 2.23 0.05  0.7946 0.8 0.68 
0.60 1.3985 1.40 0.11  1.8460 1.85 0.22  0.4475 0.45 0.56 

 

Table 3 : The effect of 1h / h  on separation distances (b and c)  for loading case 3 in the case of discontinuous 

contact ( a / h 1, 0p(x) p [1 (x / a)]  , 2 1/ 0.575,   k 5,  150  ). 


y(x

,h
1)/
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gh
2
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1h h

  
b h   c h

  (c b) h  

Analytical FEM Error (%)  Analytical FEM Error (%)  Analytical FEM Error (%) 

0.30 1.6330 1.63 0.18  4.1600 4.14 0.48  2.5270 2.51 0.67 

0.40 1.5698 1.58 0.65  3.8006 3.80 0.02  2.2308 2.22 0.48 

0.50 1.5084 1.50 0.56  3.3790 3.35 0.86  1.8706 1.85 1.10 

0.60 1.4412 1.44 0.08  2.8335 2.82 0.48  1.3923 1.38 0.88 
 

Table 4: The effect of 1h / h  on separation distances (b and c)  for loading case 1 in the case 

of discontinuous contact ( a / h 1, 0p(x) p , 2 1/ 0.575,   k 5,  150  ). 
 
 

 
 

Figure 6: Normalized contact pressure distributions for continuous contact case ( cr   ) 

and discontinuous ( cr   ) contact case ( a / h 1, 2 1/ 0.575,   1h / h 0.4 , k 1, 0p(x) p ). 
 
The normalized contact pressure distributions for continuous contact case ( cr  ) and discontin-
uous ( cr  ) contact case are depicted in Fig. 6.  As seen in Fig. 6, there are three regions in the 
case of discontinuous contact. These are continuous contact region, separation zone and also con-
tinuous contact region where the effect of the external load decreases and disappears infinitely. De-
formation shapes after finite element analysis related to Fig. 6 for continuous and discontinuous 
cases are shown in Fig. 7.  Finally, the examination of all tables and figures shows that finite ele-
ment solution indicates a good agreement with analytical solution. 


y(x

,h
1)/
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gh
2
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(a) Continuous contact case 
 
 

 
 

(b) Discontinuous contact case 
 

Figure 7: Deformation shapes after finite element analysis for continuous contact case 
(a) and discontinuous contact case (b) related to Fig. 6. 

 
 
5 CONCLUSIONS 

The main purpose of this paper is to compare and verify results obtained using analytical method 
and FEM for a contact problem in the continuous and discontinuous contact cases. So, the problem 
is solved analytically using linear elasticity theory and integral transform technique. Then, initial 
finite element model of the problem is created by ANSYS software and finite element analysis is 
performed. According to this study, the followings can be deducted: 
 
 Initial separation distance increases as ( 0 1k k /  ) decreases.  

 Increasing stiffness of the Winkler foundation ( 0 1k k /  ) reduces the value of initial separa-
tion distance and the initial separation occurs at a point more close to the axis of symmetry.  

 As 0 1k k /   increases, the change of initial separation distance crx  dwindles away and crx  
approaches to a constant value  
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 Initial separation distance increases with increasing of 2 1/  . This means that as Layer 2 be-
comes more rigid as against Layer 1, the initial separation occurs at more distant point from 
the axis of symmetry. 

 Maximum normalized contact pressure occurs at the axis of symmetry and maximum normal-
ized contact pressure and initial separation distance decrease with increasing of 0 1k k /  . 

 Maximum initial separation distance is obtained from loading case 1 [ 0p(x) p ].  
 Maximum normalized contact pressure between layers is obtained from loading case 3 

[
0

x
p(x) p (1 )

a
  ]. 

 Increasing the value of 1h / h results in an decrease of separation distances (b and c)  between 

the layers for both loading cases 
 There are three regions in the case of discontinuous contact. These are continuous contact re-

gion, separation zone and also continuous contact region where the effect of the external load 
decreases and disappears infinitely 

 It is observed that the results obtained using FEM is in a good agreement with the analytical 
results. 
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