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Abstract 

Free vibration analysis of rotating functionally graded (FG) thick 

Timoshenko beams is presented. The material properties of FG 

beam vary along the thickness direction of the constituents ac-

cording to power law model. Governing equations are derived 

through Hamilton’s principle and they are solved applying differ-

ential transform method. The good agreement between the results 

of this article and those available in literature validated the pre-

sented approach. The emphasis is placed on investigating the 

effect of several beam parameters such as constituent volume 

fractions, slenderness ratios, rotational speed and hub radius on 

natural frequencies and mode shapes of the rotating thick FG 

beam. 
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1 INTRODUCTION 

The laminated composite structures can be tailored to design advanced structures, but the sharp 

change in the properties of each layer at the interface between two adjacent layers causes large in-

terlaminar shear stresses that may eventually give rise to well-known phenomenon known as delam-

ination. Such detrimental effects can be mitigated by grading the properties in a continuous manner 

across the thickness direction resulting in a new class of materials known as ‘functionally graded 

materials’ (FGMs) (Ebrahimi, 2013). In an effort to develop the super heat resistant materials, Jap-

anese material scientists proposed the concept of FGM in the early 1980s. These materials, which 

are microscopically heterogeneous and are typically made from isotropic components, such as metals 

and ceramics, were initially designed as thermal barrier materials for aerospace structures and fu-

sion reactors (Ebrahimi & Rastgoo, 2008a, b). FGMs are composite materials with inhomogeneous 
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micromechanical structure and are generally composed of two different parts such as ceramic and 

metal in which the material properties changes smoothly between two surfaces. This kind of materi-

al as a novel generation of composites of microscopical heterogeneity are achieved by controlling the 

volume fractions, microstructure, porosity, etc. of the material constituents during manufacturing, 

resulting in spatial gradient of macroscopic material properties of mechanical strength and thermal 

conductivity. As a result, In comparison with traditional composites, FGMs possess various ad-

vantages, for instance, ensuring smooth transition of stress distributions, minimization or elimina-

tion of stress concentration, and increased bonding strength along the interface of two dissimilar 

materials. Therefore, FGMs have received wide applications in modern industries including aero-

space, mechanical, electronics, optics, chemical, biomedical, nuclear, and civil engineering to name a 

few during the past two decades. Motivated by these engineering applications, FGMs have also 

attracted intensive research interests, which were mainly focused on their static, dynamic and vi-

bration characteristics (Ebrahimi et al. 2009a, b). 

 Further, the increasing use of beams as structural components in various fields such as marine, 

civil and aerospace engineering has necessitated the study of their vibration behavior and a large 

number of studies can be found in literature about transverse vibration of uniform isotropic beams. 

In this study, a relatively new approach called differential transformation method (DTM) is applied 

in analyzing vibration analysis of rotating FG beams. The concept of DTM was first proposed by 

Zhou (1986) in solving linear and non-linear initial value problems in electrical circuit analysis. The 

superiority of the DTM is its simplicity and good precision and depends on Taylor series expansion 

while it takes less time to solve polynomial series. It is different from the traditional high order 

Taylor’s series method, which requires symbolic computation of the necessary derivatives of the 

data functions. With this method, it is possible to obtain highly accurate results or exact solutions 

for differential equations. With this technique, the given partial differential equation and related 

initial conditions are transformed into a recurrence equation that finally leads to the solution of a 

system of algebraic equations as coefficients of a power series solution. This method is useful for 

obtaining exact and approximate solutions for linear and nonlinear ordinary and partial differential 

equations and there is no need for linearization or perturbation. Also large computational work and 

round-off errors are avoided. It’s a proper method to analyze beam vibrations. Study on rotating 

Timoshenko beams by differential transform method has been presented by some researchers (Ho 

and Chen, 2006; Mei, 2008). 

In comparison with FGM shells and plates, there are fewer researches in literature about FGM 

beams. Among those, Navier type solution method has been applied by Aydogdu and Taskin (2007) 

to study free vibration of FG beams with simply supported edges. Kapuria et al. (2008) found vi-

bration response of layered FG beams. Li et al. (2013) suggested a unified approach for analyzing 

free vibration of Euler and Timoshenko FG beams. Sina et al. (2009) analyzed the free vibration of 

FG beams with an analytical method; they used a new beam theory which is a little different from 

first-order shear deformation beam theory. Simsek (2010) has studied free vibration response of FG 

beam for different higher order beam theories.  Recently Pradhan and Chakraverty (2013) have 

presented free vibration response of Euler and Timoshenko FG beams under various boundary con-

ditions. Ke et al. (2010) have studied nonlinear vibration of non-rotating FG beams using both ex-

ponential law and power law distribution of material properties. Recently, Li et al (2013) has inves- 
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tigated the free vibration of non-rotating functionally graded beams with exponential variation of 

material properties. It is to be mentioned that in two above aforesaid articles the FG beam is not 

rotating.   

 Rotating beams play an important role in the modeling of engineering applications such as tur-

bine blades, airplane propellers and robot manipulators among others. This subject has been inves-

tigated with different level of intensity, at least, over the last four decades. However, to the best of 

the author’s knowledge, the research work on rotating beams made of functionally graded materials 

is scarce. Recently Mohanty et al. (2013) used finite element method to study free vibration of 

sandwich and ordinary rotating FG beams. Shahba et al. (2013) have investigated the free vibration 

of centrifugally stiffened tapered FG beams. However, in these formulations the material properties 

of beam vary along the length of the beam while it is commonly not applicable in real structures. 

Also the effects of shear deformation and rotary inertia were not taken into account. Although 

Classical Euler–Bernoulli beam theory was used successfully for isotropic beams but since it neglects 

shear deformation effects, it gives unreliable results for advanced materials, e.g. composites and 

functionally graded materials (FGMs). 

Motivated by these considerations, the need for investigation of vibration characteristics of the 

functionally graded thick beams considering the effect of shear deformation and rotary inertia is 

very much felt. In this study, the vibration characteristics of rotating FG beam is analyzed within 

the context of Timoshenko beam theory. The material properties are assumed to be graded along 

the thickness of the beam according to FG power-law distribution. The governing equations are 

derived and solved by applying the semi-analytical differential transform method. Comparisons with 

the results from the existing literature are provided for validation in special cases. Numerical results 

are presented to examine the effect of several beam parameters such as constituent volume frac-

tions, slenderness ratios, rotational speed and hub radius on vibration behavior of the rotating thick 

FG beam. 

 
2 THEORY AND FORMULATION 

2.1. Power-law Functionally Graded Material (P-FGM) Beam 

One of the most favorable models for FGMs is the power-law model, in which material properties of 

FGMs are assumed to vary according to a power law about spatial coordinates. The coordinate 

system for FGM rotating beam is shown in Fig. 1. The length of the beam is L and thickness is h. 

The FG beam is attached to periphery of a rigid hub of radius R and the hub rotates about z axis 

at a constant angular speed Ω. A Cartesian coordinate system O(x, y, z) is defined on the central 

axis of the beam where the x axis is taken along the central axis, the y-axis in the width direction 

and the z-axis in the depth direction. The FG beam is assumed to be composed of ceramic and 

metal and effective material properties (Pf) of the FG beam such as Young’s modulus Ef, shear 

modulus Gf and mass density ρf  are assumed to vary continuously in the thickness direction (z-axis 

direction) according to an power function of the volume fractions of the constituents while the Pois-

son’s ratio is assumed to be constant in the thickness direction. According to the rule of mixture, 

the effective material properties, P, can be expressed as (Şimşek, M., and T. Kocatürk, 2010): 
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Pf = PcVc + PmVm                                                        (1) 
 

Where Pm, Pc, Vm and Vc are the material properties and the volume fractions of the metal and the 

ceramic constituents related by: 

Vc +Vm = 1  (2a) 
 

The volume fraction of the metal constituent of the beam is assumed to be given by: 
 

Vc = (
z

h
+

1

2
)q                                                          (2b) 

 

Here q is the non-negative variable parameter (power-law exponent) which determines the material 

distribution through the thickness of the beam. Therefore, from Eqs. (1)–(2), the effective material 

properties of the FG beam can be expressed as follows: 
 

Pf(z) = (Pc − Pm) (
z

h
+

1

2
)
q
+ Pm           (3)                  

 

According to this distribution, bottom surface (z = -h/2) of functionally graded beam is pure metal, 

whereas the top surface (z = h/2) is pure ceramics. 

 
2.2. Formulation of FGM Beam Using Timoshenko Beam Theory 

In a Cartesian coordinate system, x is the distance of the point from the hub edge parallel to beam 

length, u0 is the axial displacement due to the centrifugal force, z is the vertical distance of the 

point from the middle plane, w is the transverse displacement of any point on the neutral axis and 

θ is the rotation due to bending. Displacement field components are considered based on Timoshen-

ko beam theory. Considering Hodges et al. (1981) assumption and neglecting terms which are great-

er than ε2 strain-displacement and strain energy simplified relations are calculated as follows: 

 

εxx = u0
′ − zθ′ +

(w′)2

2
  (4) 

γxz = w′ − θ                (5) 

γxy = 0    (6) 
 

In addition, bending strain energy Ub and shear strain energy Us are given respectively by: 

 

Ub = ∭
E(z)ε2

2
 dV

V
    (7) 

Us = ∭
G(z)γ2

2
 dV

V
      (8) 
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Figure 1: Typical functionally graded beam with Cartesian coordinates. 

 
Substituting equations (4-6) into equations (7-8) leads to 
 

Ub = 
1

2
∫ ∫ E(z){u0

′ − zθ′ +
(w′)2

2
}2

L

0A
 dAdx  (9) 

Us = ∭
G(z)(γxy

2+γxz
2)

2
 dV

V
       (10) 

 

Further, the total strain energy is given by: 
 

U = Us + Ub    (11) 
 

The axial displacement u0
′ (x), which is uniform across the cross section is related to strain ε0(x) by: 

 

u0
′ (x) = ε0(x) =

T(x)

A1
                                                    (12) 

 

In which T(x) is centrifugal force and is defined as: 
 

T(x) = ∫ B1
L

x
Ω2(R + x)dx      (13) 

 

According to equations (9-13) bending and shear strain energy are obtained respectively as follows: 
 

Ub =
1

2
∫ (A2

L

0

(θ′)2 + T(w′)2)dx + const     
 

(14) 

Us = 
1

2
 ∫ C(w′ − θ)2L

0
dx (15) 

 

Here, A1 and A2 are bending rigidity and axial rigidity of the beam cross section respectively and 

are defined as: 

( 𝐴1 , 𝐴2) = ∫ 𝐸(𝑧)(1, 𝑧2)
ℎ/2

−ℎ/2
𝑑𝐴  (16) 

 

And B1and C are normal inertia term and shear rigidity factor respectively, which are defined as 

follows:  
 

 B1  = ∫ ρ(z)(1, z2)
h/2

−h/2
dA   (17) 
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C =  ∫kG(z)dA 
 

(18) 
 

Where A, ρ and E are the area of cross-section, the mass density and modulus of elasticity of the 

beam respectively and G is the shear modulus and k is the Timoshenko shear correction factor 

which has been assumed equal to the isotropic case, i.e. k=5/6.  Further, substituting equations 

(14-15) into equation (11) one gets the total strain energy of the beam in the following form:  
 

U =
1

2
∫ A2

L

0

(θ′)2 + T(w′)2 + C(w′ − θ) 2dx   
(19) 

 

Also the kinetic energy expression is given as: 
 

τ =  
1

2
∫ ∫ (Vx

2 + Vy
2 + Vz

2)ρ dA dx
L

0A
   (20) 

 

And the total velocity V⃗⃗  can be expressed in terms of deformed positions as:  
 

V⃗⃗ = (ẋ1 −Ωy1)i +(ẏ1 +Ωyx1)j + ż1k⃗  (21) 

Vx = −ξθ̇ − ηΩ (22) 

Vy = (R + x + u0 − ξθ)Ω (23) 

Vz = ω̇ (24) 
 

Now substituting equations (22-24) into equation (20) kinetic energy is obtained as follows: 
 

 

τ =
1

2
 ∫ [B1

L

0
ω̇ 2 + A2θ̇

2 + A2Ω
2θ2]dx     (25) 

 
2.3. Deriving Governing Equations for Rotating FG Beam 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be stated in 

analytical form as:  

∫ (δU + δV − δτ) = 0
t2
t1

                                                    (26) 
 

Here, t1 and t2 are the initial and end time, respectively; δU is the virtual variation of the strain 

energy; δV is the virtual variation of the potential energy; and δτ is the virtual variation of the 

kinetic energy. According to Hamilton’s principle, the equations of motion can be obtained as: 
 

−B2  θ ̈ + B2Ω
2 θ + A2θ

′′ + kC(W′ −  θ) = 0                  (27) 

−B1Ẅ + (TW′)′ + kC(W′′ − θ′) = 0                              (28) 
 

Further, the two ends of the Timoshenko cantilever beam (x = 0 and x = L) are subjected to the 

following boundary conditions: 
 

at x=0:        W(0) = 0 , ϴ (0) = 0 (29) 

at x=L:        ϴ'(1) = 0 , W'(1)- ϴ (1) = 0 (30) 
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Assuming simple harmonic oscillation, w and θ can be written as: 

W(x, t) = W̅(x)eiωt                  
(31) 

θ(x, t) = θ̅(x)eiωt                          (32) 
 

Substituting equations (31) and (32) into equations (27) and (28), the governing equations are as 

follows: 
 

B2  ω
2  θ ̅ + B2Ω

2 θ ̅ + A2θ̅
′′ + kC(W̅′ − θ̅ ) = 0 (33) 

B1ω
2W̅ + (TW̅′)′ + kC(W̅′′ − θ̅′) = 0 (34) 

 

The dimensionless parameters which founded according to FGM characteristics are used to simplify 

the equations and to make comparisons with the studies in literature such as Banerjee (2001) can 

be given as follows: 

η2 =
B1L

4Ω2

A2
,   r2 =

B2

A1L
2   , δ =

R

L
      ,      ξ =

x

L
   

μ2 = 
B1L

4ω2

A2
,   s2 = 

A2

kCL2  ,  W(ξ) =
W̅̅̅

L
            (35) 

Then dimensionless expressions for centrifugal force and governing equations are obtained as fol-

lows: 

T(ξ) = B1Ω
2L2 [δ(1 − ξ) +

(1 − ξ2)

2
] 

 

(36) 

θ̅′′ + η2r2 (1 +
ω2

Ω2
) θ̅ +

1

s2
(W̅′ − θ̅) = 0 

 

(37a) 

  {[δ(1 − ξ) +
(1 − ξ2)

2
] W̅′}

′

+ (
ω2

Ω2
)W̅ +

1

s2η2
(W̅′′ − θ̅′) = 0    

 

(37b) 

 

Additionally, the dimensionless boundary conditions can be expressed as follows 
 
 

ξ = 0                 W̅ = �̅� = 0 (38a) 

𝜉 = 1      
𝑑W̅

𝑑𝜉
− �̅� =

𝑑�̅�

𝑑𝜉
= 0 

(38b) 

 
2.4. Implementation of Differential Transform Method  

Generally, it is rather difficult to derive an analytical solution for Eqs. (37-38) due to the nature of 

non-homogeneity. In this circumstance, the DTM is employed to translate Eqs. (33-34) into a set of 

ordinary equations. First, the procedure of differential transform method is briefly reviewed. Differ-

ential transformation of function y(x) according to Abdel-Halim Hassan (2002) is defined as follows: 
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Y(k) =  
1

k!
[

dk

dxk y(x)]
x=0

        (39) 

In which y(x) is the original function and Y(k) is the transformed function. Besides the differential 

inverse transformation of Y(k) can be obtained as follows: 
 

y(x) = ∑ xkY(k)∞
n+1      (40) 

 

Consequently from equations (39-40) we obtain: 
 

y(x) =  ∑
xk

k!
[

dk

dxk y(x)]
x=0

∞
k=0      (41) 

 

Equation (41) reveals that the concept of the differential transformation is derived from Taylor’s 

series expansion. In real applications the function y(x) in equation (40) can be written in a finite 

form as: 
y(x) = ∑ xkY(k)n

k=0     (42) 
 

In this calculations y(x) = ∑ xkY(k)∞
n+1  is small enough to be neglected, and n is determined by the 

convergence of the eigenvalues. In Table (1) the basic theorem of DTM is stated while table (2) 

presents the differential transformation of conventional boundary conditions. Applying the DTM 

rule on the equations of motion (37) and boundary conditions (38) the next four equations are ob-

tained as: 
 

 

Original function Transformed function 

y(x) = λφ(x) Y(k) = λΦ(k) 

y(x) = φ(x) ± θ(x) Y(k) = Φ(k) ± Θ(k) 

y(x) =
dφ

dx
 Y(k) = (k + 1)Φ(k + 1) 

y(x) =
d2φ

dx2
 Y(k) = (k + 1)(k + 2)Φ(k + 1) 

y(x) = φ(x)θ(x) Y(k) = ∑Φ(l)Θ(k − l)

k

l=0

 

y(x) = xm Y(k) = δ(k − m) = {
 1       k = m
 0       k ≠ m

 

 

Table 1: Some of the transformation rules of the one-dimensional DTM. 
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X=1 X=0 

Transformed BC Original BC Transformed BC Original BC 

∑F[k] = 0

∞

k=0

 
 

f(1)=0 

 

F[0]=0 

 

f(0)=0 

∑kF[k] = 0

∞

k=0

 
 df

dx
(1) = 0 

 

F[1]=0 

df

dx
(0) = 0 

∑k(k − 1)F[k] = 0

∞

k=0

 
d2f

dx2
(1) = 0 

 

F[2]=0 

d2f

dx2
(0) = 0 

∑k(k − 1)(k

∞

k=0

− 2)F[k] = 0 

d3f

dx3
(1) = 0 

 

F[3]=0 

d3f

dx3
(0) = 0 

 

Table 2: Transformed boundary conditions (B.C.) based on DTM. 

 

 

(δ + 0.5 +
1

s2η2
) (k + 1)(k + 2)W(k + 2) − δ(k + 1)2W(k + 1) + (

ω2

Ω2
−

k(k + 1)

2
)W(k)

−
1

s2η2
(k + 1)θ(k + 1) = 0 

 

 

(43) 

(k + 1)(k + 2)θ(k + 2) + [η2r2 (1 +
ω2

Ω2
) −

1

s2
] θ(k) +

1

s2
(k + 1)W(k + 1) = 0 

(44) 

∑k ∗ Θ(k) = 0

n

i=0

 
(45) 

∑k ∗ w(k) − Θ(k) = 0

n

i=0

 
(46) 

 

Here, W(k) and θ (k) are the differential transforms of w(ξ) and θ (ξ), respectively. Substituting 

W(k) and θ (k) in eqs. (45-46) we have: 
 

Mj1
(n)

c1 + Mj2
(n)

c2 = 0 , j = 1,2,3,… , n                                                         (47) 
 

In which Mij are polynomials in terms of ω corresponding to nth term. The matrix form of equation  

(47) can be prescribed as: 
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[
M11

(n)
M12

(n)

M21
(n)

M22
(n)

] {
c1
c2

} = 0 
 

(48) 

Further, studying the existence condition of the non-trivial solutions yields the following character-

istic equation: 

|
M11

(n)
M12

(n)

M21
(n)

M22
(n)

| = 0 
 

(49) 

 

Solving equation (49), the ith estimated eigenvalue for nth iteration (ω = ωi
(n)

) may be obtained 

and the total number of iterations is related to the accuracy of calculations which can be deter-

mined by the following equation: 

|ωi
(n)

− ωi
(n−1)

| < ε (50) 
 

In this study ε=0.0001 considered in procedure of finding eigenvalues which results in 4 digit preci-

sion in estimated eigenvalues. Further a Matlab program has been developed according to DTM 

rule stated above, in order to find eigenvalues and plot mode shapes. 

 
3 RESULTS AND DISCUSSION 

In the present section a numerical testing of the procedure as well as parametric studies are per-

formed in order to establish the validity and usefulness of the DTM approach and the influence of 

different beam parameters such as constituent volume fractions, slenderness ratios, rotational speed 

and hub radius on the natural frequencies and mode shapes of the rotating beam is examined. The 

material properties of the power-law FG constituents are presented in Tables 3 and 4. Relations 

described in equation (51) are performed in order to calculate the non-dimensional natural frequen-

cies. 

λ = 
ωL2

h
√

ρm

Em
 

 

(51) 
 

Figures 2-4 show the convergence study of DTM method for first three frequencies. It is found that 

in DTM method after a certain number of iterations eigenvalues converged to a value with good 

precision, so the number of iterations is important in DTM method convergence. This fact is obvi-

ous in Figures 2 and 3. As seen in Figure 4, third natural frequency converged after 37 iterations 

with 4 digit precision while according to figure 2 the first natural frequency converged after 33 iter-

ations.  

 
 

 

Alumina( Al2O3) aluminum unit properties 

380 70 GPa E 

3960 2702 Kg/m
3
 ρ 

0.3 0.3 - ν 
 

 

Table 3: material properties of the FGM constituents (Simsek, 2010). 
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60694,20

60694,40

60694,60

60694,80

60695,00

25 27 29 31 33 35 37 39

λ 

n 

 
 

alumina (Al2O3) aluminum unit properties 

380 70 GPa E 

3800 2700 Kg/m
3
 ρ 

0.23 0.23 - ν 
 

 

Table 4: material properties of the FGM constituents (Sina et al., 2009). 

 

 

 
Figure 2: Convergence study for the first frequency of rotating FG beam, q=0, 𝜂=8. 

 

 

Figure 3: Convergence study for the second frequency of rotating FG beam, q=0, 𝜂=8. 

 

 
 

Figure 4: Convergence study for the third frequency of rotating FG beam, q=0, 𝜂=8. 

10154,20

10154,60

10155,00

10155,40

25 27 29 31 33 35 37 39

λ 

n 

29892,80

29893,00

29893,20

29893,40

25 27 29 31 33 35 37 39

λ 

n 
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Table 5: Comparison of fundamental frequencies of FG rotating beams for different L/h ratios. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% Difference Simsek (2010) Present q 

0.00359 1.9496 1.9495 ceramic 

0.7711 1.8145 1.8286 0.2 

3.5413 1.66046 1.7214 0.5 

6.6802 1.26495 1.3555 10 

0.6697 1.01297 1.0198 metal 

 

Table 6: Comparison of fundamental frequencies of FG rotating 

beams for different constituent volume fraction exponent. 

 
After looking into the satisfactory results for the convergence of frequencies, one may compare the 

nondimensional frequencies of FG beam associated with different slenderness ratios and constituent 

volume fraction exponents. To demonstrate the correctness of present study the results for FG ro-

tating beam are compared with the results of FG rotating beams presented by Simsek (2010) and 

Sina et al. (2009). Table 5 compares the results of the present study and the results presented by 

Simsek (2010) which has been obtained by using Lagrange’s equations for FG rotating beam with 

different slenderness ratios while Table 6 compares the presented results with ones by Sina et al. 

(2009) which has been obtained using an analytical method for various constituent volume fraction 

exponents. One may clearly notice here that the fundamental frequency parameters obtained in the 

present investigation are in approximately close enough to the results provided in these literatures 

that are used for comparison and validates the proposed method of solution. 

 Frequency parameters of power-law FG beam affected by various parameters are studied in Ta-

bles 7-9. Inspection of these tables also reveals that an increase in the value of the power-law expo-

nent leads to a decrease in the fundamental frequencies. The highest frequency values are obtained 

for full ceramic beam (q = 0) while the lowest frequency values are obtained for full metal beam (q

→∞). This is due to the fact that, an increase in the value of the power-law exponent results in a 

decrease in the value of elasticity modulus and the value of bending rigidity. In other words, the 

beam becomes flexible as the power law exponent increases. Therefore, as also known from mechan-

ical vibrations, natural frequencies decrease as the stiffness of a structure decreases. It is also inter-

esting to note that the decrease in the frequency values due to the increase in the power-law expo-

nent is almost the same for higher mode frequencies.  

L/h =100 L/h =30 L/h =10  

1.0030 1.0030 0.9960 Sina et al.(2009) 

0.9930 0.9922 0.9858 Present  

1.0070 1.0884 1.0346 % Difference 
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Figure 5: The effect of power-law exponent (q<10) on first natural 

frequency with different rotational speed parameters, L/h=10. 

 

 

 
 

Figure 6: The effect of power-law exponent (q>10) on first natural 

frequency with different rotational speed parameters, L/h=10. 

 

 

Also, note that the power-law exponent plays an important role on the fundamental frequency of 

the FG beam. The effect of power-law exponent on first natural frequency of the FG rotating beam 

with different rotational speed parameters has been illustrated in Figures 5 and 6 for two cases of 

q<10 and q>10 respectively. 
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Figure 8: The effect of power-law exponent on third natural 

frequency with different rotational speed parameters, L/h=10. 

 

 

It is observed that an increase in the value of the power-law exponent leads to a decrease in the 

fundamental frequencies. Besides the nonlinear diminishing occurs in frequency when q increased 

from 0 to 2 and the linear reduction occurs when q is increased from 2 to 10 as shown in Figure 5. 

Also the effect of the power-law exponent on the second and third mode frequencies of the FG ro-

tating beams is depicted in Figures 7 and 8 respectively. It is showed that the decrease in frequency 

parameters due to the increase in power-law exponent is also correct for higher mode frequencies.  

Also the effect of slenderness ratio (L/h) on first natural frequency in different power-law exponents 

are presented in Table 7 and plotted in Figure 9. As would be expected, the frequencies are in-

creased when the value of L/h is increased and this effect become less significant in higher slender-

ness ratios. Also the effect of slenderness ratio on first three natural frequencies of FG rotating 

beam is plotted in Figure 10. It can be concluded that by increasing the L/h ratio the natural fre-

quency parameters increase while the slenderness ratio has more effects on third natural frequency 

compared with the first and second modes. Figure 9 shows the variation of the fundamental fre-

quency of FG rotating beam with L/h ratio and the power-law exponent, while Figure 10 demon-

strates the effect of slenderness ratio of FG rotating beam on its first three natural frequencies. In 

fact, these figures can be regarded as the visual representation of Table 7. It is noteworthy that, the 

effect of slenderness ratio on the frequencies is negligible for long FG beams (i.e., L/h≥20); in other 

words the fundamental frequency of the FG rotating beam is saturated after the value of L/h = 20.  
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Table 7: Variation of the first three natural frequencies of FG rotating beam 

with L/h ratio for various values of the power-law exponent, 𝜂 =8. 

 

L/h=100 L/h =50 L/h =30 L/h=20 L/h=10 L/h = 5 mode q 

5.1424 5.1410 5.1377 5.1312 5.098 4.9877 λ1 0 

16.6578 16.6369 16.5877 16.4938 16.0314 14.6826 λ2  

39.0092 38.8779 38.5744 38.0107 35.4915 29.8114 λ3  

4.8235 4.8222 4.8191 4.8132 4.7829 4.6815 λ1 0.2 

15.6247 15.6056 15.5607 15.475 15.0516 13.8066 λ2  

36.5907 36.4711 36.1944 35.6797 33.3684 28.0963 λ3  

4.5408 4.5396 4.5367 4.5312 4.5028 4.4077 λ1 0.5 

14.709 14.6911 14.6491 14.5688 14.1718 13.0029 λ2  

34.4464 34.3344 34.0752 33.593 31.4259 26.4718 λ3  

4.3151 4.3139 4.3111 4.3057 4.2779 4.1853 λ1 1 

13.978 13.9603 13.9191 13.8403 13.4523 12.4432 λ2  

32.7335 32.6233 32.3686 31.8956 29.7817 25.0154 λ3  

4.1395 4.1382 4.1353 4.1296 4.1008 4.0066 λ1 2 

13.4086 13.3902 13.3473 13.2655 12.8662 11.7309 λ2  

31.3980 31.2827 31.0167 30.525 28.3609 23.6558 λ3  

3.8751 3.8738 3.8707 3.8648 3.8348 3.7400 λ1 5 

12.5517 12.5325 12.4877 12.4027 11.9929 10.8707 λ2  

29.3884 29.2671 28.9882 28.476 26.2714 21.7191 λ3  

3.5772 3.5760 3.5731 3.5676 3.5396 3/4514 λ1 10 

11.5868 11.5689 11.5270 11.4476 11.0652 10.0238 λ2  

27.129 27.0154 26.7543 26.2751 24.2188 20.003 λ3  

2.9644 2.9635 2.9614 2.9573 2.9364 2.8686 λ1 50 

9.6022 9.5889 9.5579 9.4988 9.2106 8.3948 λ2  

22.4846 22.4011 22.2084 21.8525 20.2897 16.9114 λ3  

2.8304 2.8296 2.8277 2.8239 2.8047 2.7417 λ1 100 

9.1684 9.1562 9.1277 9.0734 8.8073 8.0442 λ2  

21.4696 21.3931 21.2166 20.8899 19.4438 16.2600 λ3  

2.6899 2.6892 2.6874 2.6840 2.6666 2.6086 λ1 metal 

8.7135 8.7024 8.6766 8.6272 8.3841 7.6763 λ2  

20.4051 20.3359 20.1762 19.8796 18.5555 15.5780 λ3  
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The other important parameter in vibration behavior of rotating FG beam is its rotational speed 

parameter. Table 8 presents the variation of first three natural frequencies of FG rotating beam for 

different rotational speed parameters (η =0, 2, 4, 6, 8) with different power-law exponents.  

According to Table 8, increasing the rotational speed increases the first three natural frequencies 

and as seen in Figure 11 ascending pattern is more sensitive for the first natural frequency. For 

instance for FG beam with power-law exponent defined as q=2, increasing normal rotational speed 

from 2 to 4 (100% increase), leads to 35%, 7.8%, 3.2% increase in first three natural frequencies 

respectively.  

 

Figure 9: Variation of the fundamental frequency of FG rotating 

beam with L/h ratio for various power-law exponent. 

 

 

 
 

Figure 10: Variation of the first three natural frequencies of FG rotating beam with L/h ratio, q=2 ،η=2 

 

 

Figure 11: The effect of rotational speed on first three natural frequencies, L/h=10, q=0.5. 
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The next set of results was obtained to demonstrate the effect of hub radius parameter on the non-

dimensional natural frequencies of the rotating FG beam. Variation of the first three natural fre-

quencies of rotating FG beam with various hub radius parameters is tabulated in Table 9. Figure 12 

illustrates this effect for first three natural frequencies when L/h =10 ،η=2 and q=0. It is observed 

that the non-dimensional natural frequencies increase with the hub radius parameter as expected 

because of the increase in centrifugal stiffening of the beam. 
 

 

Table 8: The effect of rotational speed parameter on natural frequencies 

of FG rotating beam with different power law exponent for the case: L/h=10. 

η=8 η=6 η=4 η=2 η=0 mode q 

5.0980 4.0570 3.0801 2.2815 1.9381 λ1 0 

16.0314 14.2743 12.8669 11.9408 11.6155 λ2  

35.4915 33.4349 31.8701 30.8865 30.5505 λ3  

4.7829 3.8061 2.8896 2.1405 1.8183 λ1 0.2 

15.0516 13.4039 12.0844 11.2163 10.9114 λ2  

33.3684 31.4429 29.9784 29.0582 28.7438 λ3  

4.5028 3.5832 2.7204 2.0151 1.7118 λ1 0.5 

14.1718 12.6208 11.3787 10.5617 10.2747 λ2  

31.4259 29.6140 28.236 27.3701 27.0743 λ3  

4.2779 3.4043 2.5846 1.9145 1.6263 λ1 1 

13.4523 11.9779 10.7969 10.0198 9.7468 λ2  

29.7817 28.0559 26.7429 25.9176 25.6356 λ3  

4.1008 3.2636 2.4779 1.8353 1.5589 λ1 2 

12.8662 11.4502 10.3153 9.5680 9.3053 λ2  

28.3609 26.6944 25.4249 24.6263 24.3533 λ3  

3.8348 3.1245 2.3176 1.7165 1.4577 λ1 5 

11.9929 10.6646 9.5987 8.8962 8.6492 λ2  

26.2714 24.6945 23.4913 22.7334 22.474 λ3  

3.5396 2.8173 2.1392 1.5843 1.3454 λ1 10 

11.0652 9.8384 8.8539 8.2049 7.9766 λ2  

24.2188 22.7605 21.6475 20.9461 20.7062 λ3  

2.9364 2.3370 1.7744 1.3142 1.1162 λ1 50 

9.2106 8.1960 7.3828 6.8472 6.6589 λ2  

20.2897 19.0941 18.1832 17.6101 17.4142 λ3  

2.8047 2.2321 1.6947 1.2552 1.0662 λ1 100 

8.8073 7.8393 7.0636 6.5530 6.3735 λ2  

19.4438 18.3065 17.4405 17.5121 16.7097 λ3  

2.6666 2.1220 1.6111 1.1934 1.0137 λ1 Metal 

8.3841 7.4649 6.7286 6.2442 6.0738 λ2  

18.5555 17.4791 16.6601 16.1453 15.9694 λ3  
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Another set of results was obtained to illustrate some representative mode shapes of the rotating 

FG beam. Figure 13 shows the first normalized mode shape of the rotating FG beam plotted for 

different values of L/d (5, 20). The second and the third normalized mode shapes are plotted in 

Figures 14 and 15. Seeing as the material properties are constant through the beam axis, no change 

occurs in mode shapes and their profiles as presented in Figures 13-15. 

 

mode δ=0 δ=0.02 δ=0.04 δ=0.06 δ=0.08 δ=0.1 δ=0.12 

λ1 2.2815 2.2899 2.2983 2.3066 2.3149 2.3231 2.3314 

λ2 11.9408 11.9495 11.9581 11.9667 11.9753 11.9839 11.9925 

λ3 30.8865 30.896 30.9054 30.9149 30.9243 30.9338 30.9432 
 

Table 9: The effect of hub radius parameter on the first three natural frequencies, L/h =10  ،η=2   ، q=0. 

 

 
Figure 12: Effect of hub radius parameter on first three natural frequencies, L/h =10 ،η=2   ، q=0. 

 

 
 

Figure 13: The normalized first mode shape of rotating FG beam for different slenderness ratios. 
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Figure 14: The normalized second mode shape of rotating FG beam for different slenderness ratios. 

 

 

 
 

Figure 15: The normalized third mode shape of rotating FG beam for different slenderness ratios. 

 
4 CONCLUSIONS 
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ships. Results of the presented work are compared and validated with available results in literature. 
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speed and hub radius on the natural frequencies and mode shapes of the rotating beam is investi-

gated. The DTM method is an accurate and uncomplicated numerical method to solve eigenvalue 

problems. The presented expressions are convenient and efficient for the analysis of the FG beams 

and they are valid for a wide range of vibration amplitudes. The FG beam is analyzed for Power-

law model, changing power-law exponent leads to different distributions of metal and ceramic in FG 

beam. It is concluded that by increasing power-law exponent decreases the frequency parameters 

while increasing the slenderness ratios resulted in increasing the frequency parameters; this effect 
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natural frequency parameter, variation of this parameter have a direct relation with frequency pa-

rameter. In comparison with other parameters hub radius has not a sensitive effect on natural fre-

quency, increasing hub radius increases natural frequency with low gradient. 
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