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Abstract 

In this paper, squeeze film damping in a micro-beam resonator 

based on micro-polar theory has been investigated. The proposed 

model for this study consists of a clamped-clamped micro-beam 

bounded between two fixed layers. The gap between the micro-

beam and layers is filled with air. As fluid behaves differently in 

micro scale than macro, the micro-scale fluid field in the gap has 

been modeled based on micro-polar theory. Equation of motion 

governing transverse deflection of the micro- beam based on modi-

fied couple stress theory and also non-linear Reynolds equation of 

the fluid field based on micropolar theory have been non-

dimensionalized, linearized and solved simultaneously in order to 

calculate the quality factor of the resonator. The effect of micropo-

lar parameters of air on the quality factor has been investigated. 

The quality factor of the of the micro-beam resonator for different 

values of non-dimensionalized length scale of the beam, squeeze 

number and also non-dimensionalized pressure has been calculated 

and compared to the obtained values of quality factor based on 

classical theory.   
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1 INTRODUCTION 

Recently, progress in technology of micro-electromechanical systems (MEMS) can be seen in fa-

bricating new devices and creating innovative applications. The fact that these systems can be 

produced at low cost  and in large volumes, also in small size and with low-energy consumption, 

make them attractive and cause a great interest among scientists and engineers. Variety of 

MEMS devices such as accelerometers, micro-pumps, micro-sensors and micro-resonators, have 

been utilized in engineering, medical and science applications. But unfortunately because of com-

plex design process of MEMS devices, they are still being designed applying trial and error met-

Mina Ghanbari a 

Siamak Hossainpour a* 

Ghader Rezazadeh b 

 
a Mech. Eng. Dept., Sahand University of 

Technology, Tabriz, Iran 
b Mech Eng. Dept., Faculty of Eng., 

Urmia University, Urmia, Iran 
*Author's email: hossainpour@sut.ac.ir 

 

http://dx.doi.org/10.1590/1679-78251364 

 

Received 19.05.2014 

In revised form 02.07.2014  

Accepted 02.07.2014 

Available online 13.10.2014 

 

 
 

mailto:%20hossainpour@sut.ac.ir
http://dx.doi.org/10.1590/1679-78251364


78      Mina Ghanbari et al. / Study of Squeeze Film Damping in a Micro-beam Resonator Based on Micro-Polar Theory  

Latin American Journal of Solids and Structures 12 (2015) 77-91 

 

hod  because of inherent couple-energy domains as electrostatic, thermal and mechanical forces 

involved in designe process. Most typical MEMS devices employ a capacitor that consists of two 

parallel plates in which one plate is actuated electrically and its motion is detected by capacitive 

changes. In order to increase the efficiency of actuation, the distance between parallel plates is 

minimized. Under these conditions the so-called squeeze film damping is pronounced (Nayfeh and 

Younis, 2004; Younis, 2004).  

The squeeze film damping is the result of the movement of the fluid resisted by its viscosity 

that causes the fluid act as a spring and a damping force. The effect of squeeze film damping on 

the response of microstructures have been studied extensively in the past. The effect of damping 

on miniaturizing resonators was studied by Newell (1968). He divided the pressure range into 

three regimes. For the third regime where the pressure is high, he introduced an expression for 

damping based on the pressure drop in viscous flowing fluid. The quality factors of electrostatic 

clamped-clamped micro-beams encapsulated at low pressures were measured experimentally by 

Zook (1992). Experimental results were compared with both Christian's (1966) model in the mo-

lecular regime and Newell's model in the viscous regime. Legtenberg and Tilmas (1994) conducted 

experiments to measure the quality factors of clamed-clamped micro-beams encapsulated at very 

low pressures. Comparing the experimental results with those obtained by kinetic theory of gases, 

they found that the theory overestimates the measured quality factors by more than two orders of 

magnitude. Starr (1994) modeled a parallel-plate accelerometer using a linearized Reynolds equa-

tion for incompressible fluid.  He calculated the pressure distribution under a plate with hole by 

using the finite element package ANSYS. The linearized compressible Reynolds equation was 

solved analytically by Blech (1983). He derived expressions for the spring and damping forces of 

the plates of rectangular and circular shapes. Energy dissipation was modeled using statistical 

thermodynamics by many researches. The Christian model was modified by Kadar (1996) and Li 

(1999). By comparing the theory and experimental results they found that the theory results are 

in good agreement with experimental ones. Bao (2002) studied the effect of a moving structure on 

changing the kinetic energy of the gas molecules using an energy-transfer model and derived an 

equation for the quality factor that was modified by a correction factor. Several models have been 

proposed by researchers for flexible microstructures. Yang et al. (1997) simulated the dynamic 

behavior of an electrostatic clamped-clamped micro-beam utilizing the finite-element package 

ABAQUS. A macro-model was developed by Hung and Senturia (1999) to simulate the dynamics 

of a clamped-clamped micro-beam by using the Galerkin method for discretizing the coupled dif-

ferential equations. Damping characteristics for the first three flexural modes of vibration of the 

resonator were obtained by Pandey and Pratap (2007) in the case static deflection due to DC 

load was neglected. Younis and Nayfeh (2007) obtained bias deflection of the micro-plate under 

different ambient pressures by using perturbation method. Squeeze film characteristics of cantile-

ver micro-resonators operating in different ambient pressure conditions for higher modes of vibra-

tion under large DC load were obtained by Chaterjee and Pohit (2009.; 2010). Khatami and Re-

zazadeh (2009) studied the dynamic response of actuators to electrostatic force and mechanical 

shock. They showed that the combined effect of a shock load and an electrostatic actuation makes 

the instability threshold much lower than the predicted threshold, considering the effect of shock 

force or electrostatic actuation alone. 
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Although several studies have been done on the dynamic behavior of the micro-structures un-

der squeeze film damping but most of them have used the linearized Reynolds equation obtained 

by classical theories, for simulating the fluid field. Numerous experimental results indicate that,  

as fluid  flow moves differently in the micro-scale than that in the  macro scale, in the study of 

micro and nano-scale fluid mechanics, the Navier-Stokes equations derived from classical conti-

nuum, become incapable of explaining the micro scale fluid behaviour (Kucaba-Pietal, 2004). 

A novel approach that was developed by Eringen (1966, 1972) includes the effect of local ro-

tary inertia and couple stresses and offers mathematical foundation to capture the motions of the 

micro-scale fluids. Todays, researches show that applying micro-polar fluid theory in modeling the 

micro-scale fluid field can be a useful method for predicting the behaviour  of the micro- scale 

flow [Srinivasacharya et al ,2001; Kucaba-Pietal, 2008; Deo and Shukla, 2012]. 

In this paper, free vibration of the micro-beam  under the effect of squeeze film damping ba-

sed on micro-polar theory is studied. The coupled governing equations of motion of the beam 

based on modified couple stress theory and  pressure field of the fluid based on micro-polar theory 

are solved simultaneously using Galerkin based reduced order model. The effect of non-

dimensionalized length scale and also coupling parameter of air on the of quality factor of  the 

resonator is studied.  Values of the guality factor of the micro-beam for different values of length 

to width ratio of the beam and also different values of aqueeze number amd non-dimensionalized 

pressure are determined and compared to those obtained based on classical theory.  

 
2 COSSERAT (MICRO-POLAR) THEORY 

The Cosserat theory of elasticity incorporates a local rotation of points as well as the translation 

assumed in classical elasticity; also it included a couple stress as well as the stress. Several 

authors developed the theory in the language of modern continuum mechanics as Mindlin and 

Tiersten (1962), Mindlin (1965), Eringen (1868) and Nowacki (1970).  The Micro-inertia which 

was incorporated by Eringen and Cosserat elasticity was renamed micro-polar elasticity. Eringen 

(1968) introduced the concept of micro-polar fluids to characterize concentrated suspensions of 

neutrally buoyant rigid particles in a viscous fluid where individuality of substructures affects the 

physical outcome of the flow. Basically, these fluids support couple stresses and body couples 

furthermore, they exhibit micro-rotational and micro-inertial effects. It may be noted that micro-

polar fluid theory takes care of the rotation of fluid particles by means of a kinematic vector ca-

lled the micro-rotation vector which is independent from the vorticity of the fluid and is absent in 

classical continuum. 

   
2.1 Kinematics 

As shown in figure 1, an element  ∆V  is enclosed within its surface ∆S in the un-deformed body. 

Let the center of mass of ∆V has the position vector  �⃗� .Suppose that the element ∆V contains 𝑁 

discrete micro-material elements ∆V (𝛼), ( 𝛼 = 1,2, … 𝑁). The position vector of the center of the 

mass of ∆V and displacement vector of a material point in the αth microelement in the deformed 

body may be expressed as: 
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Figure 1: Deformation of a micro-volume. 

 

x⃗⃗k = X⃗⃗⃗k + U⃗⃗⃗k (1) 

 

�⃗⃗⃗�𝐾
(𝛼)

= �⃗⃗⃗�𝐾 + �⃗⃗�𝐾
(𝛼)

𝜙𝑘𝐾 ;     𝜙𝐾𝐿 = −𝜙𝐿𝐾 = −𝜀𝐾𝐿𝑀𝜙𝑀   (2) 
 

Where �⃗⃗�(𝛼)is the position of a point in the microelement relative to the mass center of ∆V and 

𝜙𝑘𝐾 is defined as skew-symmetric micro-rotation tensor which is independent of macro-rotation in 

the micro-polar theory. By introducing 𝐶𝐾𝐿 as macro- deformation and 𝛹𝐾𝐿and 𝛤𝐾𝑀𝐿 as micro-

deformation tensors, the macro and micro strain tensors are defined as: 
 

 CKL ≈ UL,K + UK,L + δKL;      EKL ≡
1

2
(CKL − δKL) =

1

2
(UL,K + UK,L)  (3) 

 

 ΨKL ≈ UL,K+δKL + ϕKL;      £KL ≡ ΨKL − δKL =  EKL + εKLM(RM − ϕM)  (4) 
 

 𝛤𝐾𝑀𝐿 ≈ 𝜙𝐾𝑀,𝐿 ;        𝛤𝐾𝑀𝐿 ≡ −𝜀𝐾𝐿𝑁𝜙𝑁,𝑀 (5) 
 

Where  𝐸𝐾𝐿 is defined as the macro-strain tensor while £𝐾𝐿 and 𝛤𝐾𝑀𝐿  are defined as micro-strain 

tensors, respectively. 

 
2.2 Balance Equations  

As shown in figure 2, it is assumed that the transfer of the interaction between two particles of the 

body through a surface element 𝑛𝑙ds occurs not only by means of a traction vector 𝑡𝑙𝑑𝑠 but also a 

moment vector 𝑚𝑙ds. Surface forces and couples are then represented by the generally skew-

symmetric stress 𝜎𝑙𝑘and couple stress 𝜇𝑙𝑘 tensors: 
 

  tl = σlknk ;        ml = μlknk      (6) 
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Figure 2: surface and body loads on the macro-volume. 

 

So, the equations of the balance of momentum and balance of moment of momentum are as: 
 

𝜎𝑙𝑘.𝑘 + 𝜌𝑓𝑙 = 𝜌�̈�𝑙             𝑙 = 1,2,3 (7) 
 

𝜇𝑙𝑘,𝑘 +  𝜌𝑙𝑙 − 𝜀𝑙𝑖𝑗𝑡𝑖𝑗 = 𝐼𝑓�̇�𝑙       𝑙 = 1,2,3     (8) 
 

In which 𝑓𝑙 and 𝑙𝑙 are body forces and body couples, respectively, 𝜌 is mass density, 𝐼𝑓 is micro-

inertia density, 𝑢𝑙 are micro-displacements and 𝜙𝑙 are micro-rotations. 

 
2.3 Constitutive Equations 

The constitutive equations of the micro-polar media link the deformation and micro-rotations 

tensors to the force and couple stresses as: 
 

𝑡𝐾𝐿 = 𝜆𝛿𝐾𝐿𝐸𝐾𝐿 + (2μ + k)𝐸𝐾𝐿 + k𝜀𝐾𝐿𝑀(𝑅𝑀 − 𝜙𝑀)   (9) 
 

𝜇𝐾𝐿 = α𝛿𝐾𝐿

𝜕𝜙𝑀

𝜕𝑋𝑀
+ β

𝜕𝜙𝐾

𝜕𝑋𝐿
+ γ

𝜕𝜙𝐿

𝜕𝑋𝐿
 (10) 

 

There are 4 extra modulus in micro-polar theory α, β, γ and k .If these modulus are set equal to 

zero, the classic continuum media is obtained. 

 

3 MODEL DESCRIPTION AND ASSUMPTIONS 

As shown in figure 3, the proposed model consists of a clamped-clamped micro-beam with a rec-

tangular cross section bounded between two fixed layers. The distance between the micro-beam 

and the parallel layers is filled with air. It is supposed that the beam width/fluid gap ratio is 

large. Also it is assumed that the deflection of the micro-beam is in the small deflection regime 

and the strain is negligible. 
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Figure 3: Shematic of proposed model for studying squeeze film damping. 

 

By adding a term representing the force acting on the micro-beam owing to the pressure of the 

squeeze gas film, the equation of motion governing the transverse deflection of the beam is as 

follow (Li et al., 2007; Asghar et al., 2010; Arbind et al., 2014, Sedighi et al, 2014) 

 

(EI)eq

𝜕4𝑤(𝑥, 𝑡)

∂𝑥4
+ ρbhb

𝜕2𝑤(𝑥, 𝑡)

∂𝑡2
+ [

Ebhb

2Lb
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
Lb

0

] ×
∂2𝑤

∂𝑥2
 

= −2 ∫ (𝑝(𝑥, 𝑦, 𝑡) − pa)
b

0

𝑑𝑦 

(11) 

 

Where (𝐸𝐼)𝑒𝑞 = (𝐸𝐼 + 𝐺𝑏ℎ𝑏(𝑙𝑏)2), 𝑥 , 𝑦  are the position along the length and width of the micro-

beam. 𝑤(𝑥, 𝑡) is the defletion of the micro-beam at the position 𝑥 and the time 𝑡. 𝐿𝑏 , 𝑏 , ℎ𝑏, 𝜌 , G 

and  𝑙𝑏 are the length, width, thickness , density , shear modulus and the length scale parameter 

of the  micro-beam material, respectively. 𝑝(𝑥, 𝑦, 𝑡) is the absolute pressure in the gap at the posi-

tion 𝑥, 𝑦 and  and the time 𝑡 and 𝑝𝑎 is the ambient pressure. The boundary conditions of the mi-

cro-beam are:: 
 

𝑤(0, 𝑡) = 𝑤(𝐿𝑏, 𝑡) = 0         
𝜕𝑤(0, 𝑡)

𝜕𝑥
=

𝜕𝑤(𝐿𝑏, 𝑡)

𝜕𝑥
= 0  (12) 

 

The pressure 𝑝(𝑥, 𝑦, 𝑡) is governed by the non linear Reynolds equation of the compressible micro-

polar fluid as: (Naduvinamani and Mrali, 2007) 

  
𝜕

𝜕𝑥
{[(ℎ𝑓

3 + 12𝑙2ℎ𝑓 − 6𝑁𝑙ℎ𝑓
2𝑐𝑜𝑡ℎ (

𝑁ℎ𝑓

2𝑙
)] 𝑝

𝜕𝑝

𝜕𝑥
} +

𝜕

𝜕𝑦
{[(ℎ𝑓

3 + 12𝑙2ℎ𝑓 − 6𝑁𝑙ℎ𝑓
2𝑐𝑜𝑡ℎ (

𝑁ℎ𝑓

2𝑙
)] 𝑝

𝜕𝑝

𝜕𝑦
}   

 

= 12𝜂𝑒𝑓𝑓 (𝑝
𝜕ℎ𝑓

𝜕𝑡
+ ℎ𝑓

𝜕𝑝

𝜕𝑡
) 

(13) 

 

where ℎ𝑓  is the variable distance between the micro-beam and the parallel substrates and ηeff is 

the effective viscosity of the gas in the gap, which accounts for the rarefied gas effect through its 

dependence on the Knudsen number. Here we use the model of Veijola et al. (1995) for 𝜇𝑒𝑓𝑓 . 

Coupling Parameter N, 0 ≤ 𝑁 ≤ 1 and material parameter 𝑙 are micro-polar fluid properties that 
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distinguish it from a Newtonian fluid. In the limiting case of 𝑙 → 0, Equation (13) reduces to the 

Reynolds equation of a Newtonian fluid. Boundary conditions of equation (13) are: 
 

𝑝(𝑥, 0, 𝑡) = 𝑝(𝑥, 𝑏, 𝑡) = 𝑝𝑎             
𝜕𝑝

𝜕𝑥
(0, 𝑦, 𝑡) =

𝜕𝑝

𝜕𝑥
(𝐿𝑏, 𝑦, 𝑡) = 0 (14) 

 

By considering the following non-dimensional variables:  
 

𝑋 =
𝑥

𝐿𝑏
 ,   𝑌 =

𝑦

𝑏
 ,      𝑊 =

𝑤

𝑔0
,       𝑇 =

𝑡

𝑠
 ,     𝑃 =

𝑝

𝑝𝑎
, 𝐿 =

𝑙

𝑔0
,    𝐻 =

ℎ𝑓

𝑔0
= 1 − 𝑊 (15) 

 

where 𝑔0 is the initial gap,  𝑠 = √
𝜌𝑏ℎ𝑏𝐿𝑏

4

(𝐸𝐼)𝑒𝑞
= , 𝜆 = 4.73 , 𝜔1 =

𝜆2

𝐿𝑏
2 √

(𝐸𝐼)𝑒𝑞

𝜌𝑏ℎ𝑏
 is the first natural frequency 

of the clamped-clamped micro-beam, the Equations (11) and (13) are rewritten in the non-

dimensional form as: 

 

𝜕4𝑊

𝜕𝑋4
+

𝜕2𝑊

𝜕𝑇2
+ 𝛼 [∫ (

𝜕𝑊

𝜕𝑋
)

2

𝑑𝑋
1

0

] ×
𝜕2𝑊

𝜕𝑋2
= −2𝑃𝑛𝑜𝑛 ∫ (𝑃 − 1)𝑑𝑌

1

0

 

 
𝜕

𝜕𝑋
{[(𝐻3 + 12𝐿2𝐻 − 6𝑁𝐿𝐻2 𝑐𝑜𝑡ℎ (

𝑁𝐻

2𝐿
))] 𝑃

𝜕𝑃

𝜕𝑋
} 

 

(16) 

 

+𝛽2
𝜕

𝜕𝑌
{[(𝐻3 + 12𝐿2𝐻 − 6𝑁𝐿𝐻2𝑐𝑜𝑡ℎ (

𝑁𝐻

2𝐿
)] 𝑃

𝜕𝑃

𝜕𝑌
} = 𝜎 (𝑃

𝜕𝐻

𝜕𝑇
+ 𝐻

𝜕𝑃

𝜕𝑇
) (17) 

 

where 𝛼 =
𝐸𝑏ℎ𝑔0

2

2(𝐸𝐼)𝑒𝑞
  𝑝𝑛𝑜𝑛 =

𝑏𝑝𝑎𝐿𝑏
4

(𝐸𝐼)𝑒𝑞𝑔0
  , 𝛽 =

𝐿𝑏

𝑏
  is the aspect ratio of the cross section of the micro-beam 

and 𝜎 =
12𝜇𝑒𝑓𝑓𝐿𝑏

2

𝑠𝑔0
2𝑝𝑎

  is the squeeze number which represents a measurement of the compressibility of 

the fluid in the gap. For higher values of σ due to higher oscillation frequencies, the fluid is trap-

ped in the gap and acts like a spring. For lower values of σ due to lower oscillation frequencies 

the fluid is nearly incompressible. The corresponding non-dimensional boundary conditions of 

Equations (16) and (17) are: 
 

𝑊(0, 𝑡) = 𝑊(1, 𝑡) = 0   ,             
𝜕𝑊(0, 𝑡)

𝜕𝑋
=

𝜕𝑊(1, 𝑡)

𝜕𝑋
= 0 (18) 

 

𝑃(𝑋, 0, 𝑇) = 𝑃(𝑋, 1, 𝑇) = 1   ,            
𝜕𝑃

𝜕𝑋
(0, 𝑌, 𝑇) =   

𝜕𝑃

𝜕𝑋
(1, 𝑌, 𝑇) = 0 (19) 

 

Due to non-linearity of Equation (17), solving this equation requires linearizing. As mentioned 

above, due to small oscillation of the micro-beam, the variation of the pressure from the ambient 

pressure in every point in the domain is also small. 𝑃(𝑋, 𝑌, 𝑇) is given by : 
 

𝑃(𝑋, 𝑌, 𝑇) =
𝑝

𝑝𝑎
= 1 + 𝑃𝑑 (20) 
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Substituting Equation (20) into Equation (17) and linearizing it around 𝑝𝑎 , the following equa-

tion is obtained: 
 

{[(12𝐿2 − 6𝑁𝐿𝑐𝑜𝑡ℎ (
𝑁

2𝐿
)]

𝜕2𝑃𝑑

𝜕𝑋2
+ 𝛽2 [(12𝐿2 − 6𝑁𝐿𝑐𝑜𝑡ℎ (

𝑁

2𝐿
)]

𝜕2𝑃𝑑

𝜕𝑌2
} = 𝜎 {

𝜕𝑃𝑑

𝜕𝑇
−

𝜕𝑊

𝜕𝑇
} (21) 

 

With the following boundary conditions: 
 

𝑃𝑑(𝑋, 0, 𝑇) = 𝑃𝑑(𝑋, 1, 𝑇) = 0,
𝜕𝑃𝑑

𝜕𝑋
(0, 𝑌, 𝑇) =

𝜕𝑃𝑑

𝜕𝑋
(1, 𝑌, 𝑇) = 0 (22) 

 

It should be noted that, for vibration amplitude of approximate less than 0.5 𝜇𝑚 , the values of 

non-linear term that are dropped in linearizing process of the Reynolds equation is less than 10 % 

of the linear terms. So we can claim that our linearizing process is valid for vibration amplitude 

of approximate less than 0.5 𝜇𝑚. 

 
4 NUMERICAL SOLUTIONS 

In the field of numerical analysis, Galerkin method is a means for converting a partial differential 

equation to a problem of linear or nonlinear system of ordinary differential equations, which may 

then be projected to a lower dimensional system. It relies on the weak formulation of an equation 

and works in principle by restricting the possible solutions as well as the test functions to a sma-

ller space than the original one. These small systems are easier to solve than the original problem, 

but their solution is only an approximation to the original solution. In Galerkin method unknown 

function is expressed as a linear combination of a set of prescribed basis or shape functions. The 

overall quality of a Galerkin approximation depends on number and type of the shape functions. 

In this work a Galerkin based reduced order model are applied to solve the squeeze film damping 

coupled equations (16) and (21).  

In this work, we seek approximate solutions for 𝑊(𝑋, 𝑇) and 𝑃𝑑(𝑋, 𝑌, 𝑇) in the form of: 
 

𝑊(𝑋, 𝑇) ≅ ∑ 𝑞𝑘(𝑇)𝜓𝑘(𝑋)

𝑟

𝑘=1

 (23) 

 

𝑃𝑑(𝑋, 𝑌, 𝑇) ≅ ∑ ∑ 𝑢𝑖𝑗(𝑇)𝜑𝑖(𝑋)𝜙𝑗(𝑌)

𝑚

𝑗=1

𝑛

𝑖=1

 (24) 

 

where we approximated the deflection and pressure changes of the system with linear combina-

tions of finite number of suitable  shape functions. 

Substituting Equations (23) and (24) into Equations (16) and (21) leads to the following equa-

tions: 
 

(𝑊(𝑋, 𝑇)) = ∑ �̈�𝑘(𝑇)𝜓𝑘(𝑋) +

𝑟

𝑘=1

∑ 𝑞𝑘(𝑇)𝜓𝑘
І𝑉(𝑋)

𝑟

𝑘=1

− 𝛼 ∑ 𝜓𝑘
ІІ(𝑋)𝑞𝑘(𝑇) ∫ (𝜓𝑘

ІІ(𝑋))2
1

0

𝑑𝑋

𝑟

𝑘=1

) (25) 
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+2𝑃𝑛𝑜𝑛 ∑ ∑ 𝑢𝑖𝑗(𝑇)𝜑𝑖(𝑋

𝑚

𝑗=1

𝑛

𝑖=1

) ∫ 𝜙𝑗(𝑌)𝑑𝑌
1

0

 

ℑ(𝑃𝑑(𝑋, 𝑌, 𝑇)) = [(1 + 12𝐿2 − 6 NLcoth (
𝑁

2𝐿
))] ∑ ∑ 𝑢𝑖𝑗(𝑇)𝜑𝑖

′′(𝑋)𝜙𝑗(𝑌)

𝑚

𝑗=1

𝑛

𝑖=1

 

+𝛽2 [(1 + 12𝐿2 − 6 NLcoth (
𝑁

2𝐿
))] ∑ ∑ 𝑢𝑖𝑗(𝑇)𝜑𝑖(𝑋)𝜙𝑗

′′(𝑌)

𝑚

𝑗=1

𝑛

𝑖=1

− 𝜎 ∑ ∑ 𝑢𝑖𝑗̇ (𝑇)𝜑𝑖(𝑋)𝜙𝑗(𝑌)

𝑚

𝑗=1

𝑛

𝑖=1

 

 

+𝜎 ∑ �̇�𝑘(𝑇)𝜓𝑘(𝑋)

𝑟

𝑘=1

 (26) 

 

By using the Galerkin method, following reduced order models can be obtained: 
 

∑ 𝑀𝑓𝑘𝑞�̈�

𝑟

𝑘=1

+ ∑ 𝐾𝑓𝑘

𝑟

𝑘=1

𝑞𝑘 + 2D1 ∑ ∑ 𝐸𝑓𝑖
(1)

𝐸𝑗
(2)

𝑢𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

= 0   f = 1, … r (27) 

 

D2 ∑ ∑ 𝐺𝑞𝑖
(1)

𝐺𝑔𝑗
(2)

𝑢𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ β2 D2 ∑ ∑ 𝐺𝑞𝑖
(3)

𝐺𝑔𝑗
(4)

𝑢𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

− D3 ∑ ∑ 𝐶𝑞𝑖
(1)

𝐶𝑔𝑗
(2)

�̇�𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ D3 ∑ 𝐶𝑞𝑘
(3)

𝐶𝑔
(4)

�̇�𝑘
̇

𝑝

𝑘=1

= 0 
q = 1, … n , g = 1, … m                                                                                                                            

(28) 

 

With the following coefficients: 

 

𝑀𝑓𝑘 = ∫ 𝜓𝑓(𝑋)𝜓𝑘(𝑋)𝑑𝑋
1

0
, 𝐾𝑓𝑘 = ∫ 𝜓𝑓(𝑋)𝜓𝑘

І𝑉(𝑋)𝑑𝑋 − α ∫ [𝜓𝑓(𝑋)𝜓𝑘
ІІ(𝑋)(∫ (𝜓𝑘

ІІ(𝑋))21

0
𝑑𝑋]𝑑𝑋

1

0
,

1

0
 

 

𝐸𝑓𝑖
(1)

= ∫ 𝜓𝑓(𝑋)𝜑𝑖(𝑋)𝑑𝑋,
1

0
   𝐸𝑗

(2)
= ∫ 𝜙𝑗(𝑌)𝑑𝑌

1

0
, 𝐺𝑞𝑖

(1)
= ∫ 𝜑𝑞(𝑋)𝜑𝑖

′′(𝑋)𝑑𝑋
1

0
, 

 

𝐺𝑔𝑗
(2)

= ∫ 𝜙𝑔(𝑌)𝜙𝑗(𝑌)𝑑𝑌
1

0
,𝐺𝑞𝑖

(3)
= ∫ 𝜑𝑞(𝑋)𝜑𝑖(𝑋)𝑑𝑋

1

0
, 𝐺𝑔𝑗

(4)
= ∫ 𝜙𝑔(𝑌)𝜙𝑗

′′(𝑌)𝑑𝑌
1

0
, 

 

𝐶𝑞𝑖
(1)

= ∫ 𝜑𝑞(𝑋)𝜑𝑖(𝑋)𝑑𝑋
1

0
, 𝐶𝑞𝑘

(3)
= ∫ 𝜑𝑞(𝑋)𝜓𝑘(𝑋)𝑑𝑋,

1

0
 𝐶𝑔

(4)
= ∫ 𝜙𝑔(𝑌)𝑑𝑌

1

0
 

 

(29) 

D1 = pnon, D2 = (1 + 12L2 − 6 NLcoth (
N

2L
)) , D3 = σ (30) 

   

Applying proper shape functions in Equations.(23) and (24) which satisfy the accompanying 

boundary conditions (18) and (22) and integrating the coupled Equations (27) and (28) simulta-

neously, in which 𝑞𝑘 = �̅�𝑘𝑒ωk𝑇  and 𝑢𝑖𝑗 = �̅�𝑖𝑗𝑒ω𝑖𝑗𝑇  , the complex frequencies for the first mode 

vibration of the beam are achieved. Shape functions are considered as following:  
 

𝜓𝑘(𝑋) = 𝑠𝑖𝑛2(𝑘𝜋𝑋),  𝜑𝑖(𝑋) = 𝑠𝑖𝑛2(𝑖𝜋𝑋),   𝜙𝑗(𝑌) = sin (𝑗𝜋𝑌) (31) 
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So, According to complex frequency approach, quality factor can be calculated as: 

 

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =
1

2
|
𝑅𝑒(𝜔)

𝐼𝑚(ω)
| 

 

5 NUMERICAL RESULTS 

The material properties of the micro-beam resonator studied in this paper are given in table 1 

 

Parameters Values 

Density (kg/m3) 2700 

Young's modulus (GPa) 70 

Shear modulus (GPa) 26 

Length ( μm) 300 

Width (μm) 20 

Thickness (μm) 2 

Initial gap (μm) 1.5 

 

Table 1: The material and geometrical properties of the micro-beam resonator. 
 

For the micro-beam with mentioned properties, the numerically obtained values of quality factor 

exhibit good convergence when r value is taken as 6. The converged results for a cantilever micro-

beam resonator based on classical theory are validated with the analytical, numerical and experi-

mental results available in open literature. For design properties that are used for the experimen-

tal study by Pandey and Pratap (2007) the obtained results in this work are in good agreement 

with the analytical, numerical and experimental results. Table 2 shows comparison of damping 

ratio obtained by different methods. 

 

Experimental 

(Pandey and 

Pratap 2007) 

FE model 

(Pandey and 

Pratap 2007) 

Analytical 

(Pandey and 

Pratap 2007) 

FE model 

(Chaterjee and 

Pohit 2009) 

Semi-analytical 

model (Chaterjee 

and Pohit 2010) 

This work 

0.415 ± 0.002 0.45 0.422 0.4475 0.4484 0.4122 

 

Table 2: Comparison of damping ratio (𝜉)  obtained by different experimental and analytical methods. 

 

In order to investigation the effect of the micro-polar parameters of air on complex frequencies of 

the resonator, the values of quality factor in the classic micro-beam resonator with the properties 

listed in Table.1, for different values of non-dimension length scale (𝐿) and coupling parameter 
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(𝑁) of air are obtained and shown in figure 4. Assuming  the values of  micro-polar parameters of 

water obtained experimentally in (Kucaba-Pietal, 2008), we can consider coupling parameter of 

air being in the range of 0 ≤ 𝑁 ≤ 0.4  Results show that the values of quality factor decreases by 

increasing the values of 𝐿 and 𝑁.  

 

 
 

Figure 4: Calculated quality factor for different values of micro-polar parameters of air. 

 

Then, the values of quality factor versus different values of non-dimension length scale of the 

micro-beam and coupling parameter of air for 𝑝𝑎 = 1000 𝑝𝑎 and 𝐿 = 0.01 are obtained and shown 

in figure 5. Results show that higher values of non-dimensionalized length scale of the micro-beam 

and lower values of coupling parameter of air result in higher values of quality factor. 

 

 
 

Figure 5: Calculated quality factors versus non-dimensional length scale parameter 

of the micro-beam for different values of coupling parameter of air. 

 

Considering  𝑁 = 0.4 , determined quality factor of the resonator based on classic and micro-polar 

theory for different values of  𝛽 =
𝐿𝑏

𝑏
   are shown in figure 6. Morever the results show that by 
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increasing β, the difference between the obtained values of the quality factor increases. Results 

also show that the minimum difference is observed in the case of the classic micro-beam. 

 

 
 

Figure 6: Difference between the obtained values of quality factor based 

on classic and micro-polar theory. 

  

Quality factor of the micro-beam based on classic and modified couple stress theory versus diffe-

rent values of 𝛽 =
𝐿𝑏

𝑏
  arecalculated and  shown in Fig.7. Results show that higher values of β 

results in higher differences. Furthermore it can be observed that the maximum differences occur 

in the case of the classic fluid field. 

 

 
 

Figure 7: Difference between the obtained values of quality factor based 

on classic and modified couple stress theory 

 

In order to investigation the effect of squeeze number and non-dimensionalized pressure on the 

obtained values of quality factor based on classic and micro-polar theory, the differences are cal-

culated for variety of squeeze numbers and non-dimensionalized pressure and are shown in figure 
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8. It can be noticed that the maximum differences are observed in lower values of squeeze number 

and non-dimension pressure. 

 

 
 

Figure 8: Difference between the obtained valuesof quality factor based on classic 

and micro-polar theory versus different values of squeeze number 

 

4 CONCLUSIONS 

In this paper, squeeze film damping in the micro-beam resonator was studied. Governing equa-

tions of motion for the micro-beam and fluid field respectively based on modified couple stress 

theory and micropolar theory were solved simultaneously applying Galerkin discretization and 

complex frequency approach. By considering coupling parameter of air being in the range of 0 ≪

𝑁 ≤ 0.4.  quality factor values were calculated for different values of non-dimensionalized micro-

polar parameters of air. It was shown that increasing the values of non-dimensionalizes micro-

polar parameters causes the quality factor of the resonator to decrease. The effect of non-

dimensionalized length scale parameter of the micro-beam on the quality factor of the resonator 

was also studied. It was demonstrated that applying micro-polar theory underestimates the values 

of quality factor that are obtained based on classic theory while applying modified couple stress 

theory overestimates them. The effect of length-to-width ratio of the micro-beam on the differen-

ce  obtained values of quality factor based on classic and micro-polar theory was studied. Results 

showed that the classic micro-beam with lower values of length-to-width ratio results in lower 

differences between classic and micro-polar theory results. The effect of length-to-width ratio of 

the micro-beam on the obtained values of quality factor based on classic and modified couple 

stress theory showed that higher values of length-to-width ratio of the micro-beam in the case of 

classic fluid field results in higher differences. Effect of squeeze number and non-dimensionalized 

pressure on the values of quality factor was studied and higher differences were observed for the 

lower values of squeeze number and non-dimensionalized pressure. The obtained results in this 

paper can be useful for MEMS community in designing  MEMS resonators. 
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