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Abstract 

The Modified Global Green's Function Method (MGGFM) is an 

integral technique that is characterized by good accuracy in the 

evaluation of boundary fluxes. This method uses only projections 

of the Green's Function for the solution of the discrete problem 

and this is the origin of the term 'Modified' of its name. In this 

paper the local strategy for calculating the projections of Green's 

function using de Finite Element Method (FEM) are detailed. The 

numerical examples show some aspects of the method that had not 

yet been observed and good results for the flux in all nodes of the 

mesh. 
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1 INTRODUCTION 

The Modified Green’s Function Method (MGFM) is an integral method that is characterized 

mainly by the following factors: 
 

1 - Contrary to the BEM (Boundary Element Method) and the Trefftz Method, this method does 

not use an analytical fundamental solution and/or a Green’s function; 

2 - Only projections of the Green’s Function (denoted by GFp from now on) are required in the 

calculations. These projections can be calculated with appropriate numerical techniques. The 

Finite Element Method (FEM) is an interesting technique to obtain the discrete values for the 

GFp because they do not use fundamental solutions and/or Green’s Functions. However, it is 

necessary to use an additional operator, N+, prescribed on the boundary by the user in order to 

avoid the singularity of the final system of equations;  

3 - Precise values for the boundary generalized fluxes; and  
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4- When using the FEM for the evaluation of the GFp, the MGFM results for the potential (dis-

placements) are identical to the FEM results. Therefore, all measures of the errors based on the 

displacements of the FEM also apply to the MGFM. 
 

Using the FEM as a numerical method to obtain the discrete values for the GFp at least two 

approaches are possible: the global and the local formulations. 

The global approach (MGGFM) is the formulation that has been most used by several authors 

in the last two decades and its implementation has been extensively studied. Therefore, this will 

not be shown in this paper. In this global formulation the auxiliary problems used to calculate 

the GFp are solved after the assembly of all elements of the mesh and one additional differential 

operator N+ is preferably prescribed at the boundary nodes with homogeneous Dirichlet boundary 

conditions. The time spent to calculate the GFp is higher than the conventional finite element 

calculations and the good flux convergence is observed only at the boundary nodes. The following 

works are examples of this approach: membranes, Barcellos and Silva (1987); Mindlin´s plate, 

Barbieri and Barcellos (1991, 1993); singular potential, Barcellos and Barbieri (1991); h and p 

convergence, Filippin et al. (1992); semi-thick shell, Barbieri et al. (1993), non-homogenous po-

tentials problems, Barbieri and Barcellos (1993); subregions, Barbieri et al. (1994), laminated 

plates, Machado et al. (1994, 2008, 2012); 3D elasticity, Meira Jr. et al. (1995) and mathematical 

formulation, Barbieri et al. (1998,b).  

Using the local formulation (MLGFM) the GFp are obtained in each element of the finite el-

ement mesh. The additional operator N+ is prescribed by the user at the element boundary 

nodes. The advantages of this formulation are the accurate flux at all nodes of the mesh and the 

reduction of processing time of the analysis compared with the global formulation.  

This paper was organized in a way of providing the reader with just a review of the MGFM 

basics mathematical concepts and showing the details of the MLGFM implementation.  

The examples solved with the local approach (MLGFM) included in the text show accurate 

results for the flux in all nodes of the mesh. The solution of the one-dimensional Burgers equation 

(nonlinear problem) using the Hopf-Cole transformation is another application of this local tech-

nique to approximate the GFp due to the flux accurate evaluation at all nodes of the mesh. 

The examples solved with the global approach (MGGFM) show new results obtained with 

high-order (p=4) elements for two-dimensional singular potential problem and new observations 

for the h and p convergences for regular potential problems. 

 

2 MGFM: BASIC CONCEPTS AND ITS NUMERICAL IMPLEMENTATION 

The mathematical aspects shown in this section and all procedures for the numerical implementa-

tion of the MGFM have been previously described by Barcellos and Silva (1987), Silva (1988) and 

Barbieri et al. (1998). Small reviews of the main concepts of this method are included in the text 

to show some details that will be discussed throughout this paper. 

The u(Q) solution for the linear equation system 
 

 Q)Q()Q( bAu    (1) 
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With boundary conditions properly prescribed can be obtained using the following integral equa-

tion: 
 

 
 

d)]p([)Q,p(d)p()]Q,p([d)P()P,Q()Q( tt
NuGuG*NbGu

t    (2) 

where P and Q are  domain points, (P,Q); p and q are  boundary points, (p,q); N and 

N* are the Neumann operators associated with the differential operator A and with its adjunct 

operator A*, respectively; b(P) is the generalized force vector and G(,) is a fundamental solu-

tion.  

Adding and subtracting the quantity )p()]Q,p([)]p([)Q,p( tt
uGNuNG

  in Eq. (2) we obtain: 
  

 

 


  d)]p()[()Q,p(d)p()]Q,p()[(d)P()Q,P()Q( ttt

uNNGuGNNbGu
*    (3) 

 

where N+ is an additional operator prescribed by the user. The choice and specification of this 

operator was detailed by Barbieri et al. (1998a). 

If it is prescribed the boundary condition (N*+N+)G(p,Q)=0, the function G(,) becomes a 

Green Function and the solution for u(Q) can be rewritten as follows: 
 

 


Qd)p()Q,p(d)P()Q,P()Q( tt
FGbGu    

(4) 

 


qd)p()q,p(d)P()q,P()q( tt
FGbGu    

(5) 

 

where F(p)=(N+N+)u(p). 

After the conventional approximations of the variables u(Q), b(P) and F(p) with the finite 

elements or the boundary elements interpolations,  the process of residues orthogonalization with 

the Galerkin’s method of Eq.(4) results: 
 

              }{dd)Q,p(}{dd)Q,P(}{d ttttt D
fGbGu  



 (6) 

 

where u(Q)[]{uD}, b(P) []{b}, F(p) []{f}, [] being the set of interpolation functions of the 

domain (base of the finite elements subspace) and [] is the set of interpolation functions of the 

boundary (base of the boundary elements subspace). The vector components {uD}, {b} and {f} 

represent nodal values for the generalized displacement, for the generalized body forces and for 

the reactions on the boundary, respectively. 

Eq.(6) can be rewritten as: 
 

          }{d)p(}{d)P(}{d ttDt
fGbGu dd  



 (7) 

 

where Gd() represents the GFp on  the subspace generated by the finite element basis,  
 

   d)Q,P()P( ttt
GGd   and    d)Q,p()p( ttt

GGd . 
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Repeating the same procedure for Eq.(5), we have: 
 

              }{dd)q,p(}{dd)q,P(}{d tttb tt fGbGu  


 
(8) 

  

where u(q)= []{ub}, [] is the basis of the boundary elements subspace (trace of []) and   {ub} 

is the displacements vector on the boundary. According to the convenience, the forces on the 

boundary F(p) can be interpolated using [][]. 

Again, it is convenient to rewrite Eq.(8) in the following way: 
 

          }{d)p(}{d)P(}{d ttbt fGbGu bb  


 
(9) 

 

where Gb() represents the GFp on the subspace generated by the boundary elements basis, 

   d)q,P()P( ttt
GGb

 
and    d)q,p()p( ttt

GGb . The numerical calculation of the 

Green’s Function projections Gd() and Gb() is carried out by solving the following associated 

problems, Barcellos and Silva (1987): 

 

Problem 1:  Find Gd(P) : 
 

 





 P,p0)p(

)P()P(

d
*

d
*

G)N(N

GA
   (10) 

 

Problem 2: Find Gb(P) : 
 

  



 P,p)p()p()(

0)P(

b
*

b
*

GNN

GA
   (11) 

 

Finally, after calculating the nodal values of Gd() and Gb(), the nodal values for u(Q) and F(p) 

are obtained solving Eqs.(7) and (9). 

 
3   THE MLGFM FORMULATION  

The formulation shown in sequence is an extension of the concepts used by Barbieri et al. (1994) 

and Barbieri and Muñoz (1998) for subregions. A one dimensional problem modeled with linear 

finite elements is taken as an example to better understand the concepts of the local formulation 

of the method. Thus, when N+=0 the finite element equations for the problems (10) and (11) can 

be written as: 
 


























2

1

2

1

2,21,2

2,11,1

f

f

u

u

kk

kk
   (12) 
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To obtain discrete values of the GFp for each node of the element it is necessary to prescribe the 

additional operator N+
0 because the system of Eq (12) is singular. Figure 1 shows the scheme 

used in this work to prescribe the additional operator N+ at the element boundary nodes. 

 

 

 

 

 

 

 

 

 
 
 

Figure 1: Boundary Conditions and the additional operator N
+
 for the local formulation. 

   
The scheme illustrated in Figure 2 shows the boundary conditions and the loading used for the 

discrete calculation of Gd() and Gb() for each element. The GFp is calculated solving the follow-

ing system of equations: 
 

  


































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02,21,2
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MM

MM

10

01

GG

GG

GG

GG

kkk

kkk
 (13) 

 

where dx)x()x(M jij,i   . 

 
4   THE FINAL SYSTEM OF EQUATIONS  

Barcellos and Silva (1987) have shown that Eq. (7) can be rewritten in the following matricial 

form: 
 

       bGfGuI db }{ D    (14) 
 

where [Gc] and [Gd] are matrices of discrete values of the GFp obtained by solving equations (10) 

and (11), respectively. 

The assembled final system of equation is obtained considering the potencial (or displace-

ment) continuity and the flux balance for the internal nodes of the mesh. The final system of 

equations is solved after imposing the boundary conditions of the problem.  At the end of this 

step all nodal values for {u} and {f} are known. At this point, we have to remember that ficti-

tious fluxes were added when prescribing the additional operator N+u=k0u at all internal nodes 

of the mesh during the evaluation of the GFp. Therefore, the correct flux is obtained through 

subtraction of the additional part k0uj for any internal node j of the mesh. 

 

 

-k0 k0 
-k0 k0 

L 
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(a) Problem 1. 

 

 
 

(b) Problem 2. 
 

Figure 2: Loads and boundary conditions for the local formulation. 

 

5 RESULTS 

If not mentioned, the flux results of the FEM are obtained using the global smoothing technique 

described by Hinton and Campbell (1974) and using Lagrangian elements. 
 

5.1 One-dimensional Wave Equation 

Problem: Find the solution u(x) for: 
 

1x00x)x(u
dx

)x(ud
2

2

   (15) 

 

with boundary conditions: u(0)=0 and du(1)/dx=0. The analytical solution for this problem is 

u(x)= sin(x)/cos(1) – x. 

Homogeneous finite element meshes (N elements with degree p=1 to p=4) were used to ob-

tain the GFp and the additional operator ‘N+u=1.u’ was prescribed according to the scheme 

illustrated in Figure 1. The objective of this analysis is to evaluate the flux convergence at all 

nodes of the mesh and compare these results with the errors obtained with the FEM. 

In Figure 3 are shown the results obtained for the h convergence of the flux at x=0 and in 

Figure 4 are shown the curves for the relative error, E*=E%FEM/E%MLGFM. All curves of these 

figures can be approximated with functions of the type, E*C(p)Nm, where C(p) and m are two 

constants that depend on the degree of the element. The adjusted values for these two parame-

ters are shown in Table 1. 

 

 1 
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k0 -k0 
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Contrary to expectations, the flux results obtained with the MLGFM using the linear element 

are close to the FEM results and with similar rates of convergence. For higher order elements 

(p2) the results obtained with the MLGFM are always better than those obtained with the 

FEM and with higher convergence rates. Whereas the results MLGFM have convergence rate 

with a value close to m-2p, the results of the FEM present convergence rates near to m-2 for 

linear and quadratic elements and m-4 for cubic and fourth order elements. More detailed analy-

sis on h and p convergence of finite element solutions for the problem can be found in the litera-

ture, for example Ihlenburg (1998), Bouillard (1999), Ihlenburg and Babuska (1997) and 

Bouillard and Ihlenburg (1999). 

 

 
  

 

 

In Tables 2 and 3 are shown the results for the flux at x=0 obtained with a homogeneous mesh 

with 5 elements. The first observation to be made is that the flux errors obtained with MLGFM 

are approximately constant for all nodes of the mesh and the Neumann condition is automatically 

satisfied when the boundary condition is imposed for the solution of the final system of equations. 

Moreover, the error in the flux obtained with the FEM varies from node to node and the Neu-

mann boundary condition at x=1 is only achieved when h0. 
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Figure 3: Error % for du(0)/dx versus N – number of elements, 

(solid line=MLGFM dashed-line=FEM). 
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Figure 4: Relative error for the flux du(0)/dx, E*=E%FEM/E%MLGFM. 

. 

 

Element 

order 

MLGFM FEM E* 

C(p) m C(p) m C(p) m 

p=1 14.0043 -1.9981 49.9117 -1.9977 3.564 2.973110
-4
 

p=2 0.2404 -4.0123 17.8421 -1.9957 74.225 2.0166 

p=3 1.639910
-3
 -5.9876 0.7580 -3.9911 456.966 2.0049 

p=4 6.590410
-6
 -8.0074 0.7580 -3.9911 17751.700 4.0774 

 

Table 1: Fitted values for C(p) and m. 
 

 

x p=1 p=2 p=3 p=4 

0 1.99710
-2
 0.72110

-3
 2.06210

-4
 1.24010

-5
 

0,2 2.03110
-2
 7.39010

-3
 2.11310

-4
 1.27110

-5
 

0,4 2.15310
-2
 8.02210

-3
 2.29310

-4
 1.37910

-5
 

0,6 2.46310
-2
 9.60310

-3
 2.74510

-4
 1.65110

-5
 

0,8 3.48710
-2
 1.47810

-2
 4.22310

-4
 2.53910

-5
 

 

Table 2: FEM results for the Error % in du(x)/dx (N=5). 

 
 

 

1 10 100

 N

1.0E+0

1.0E+1
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E
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x p=1 p=2 p=3 p=4 

0 5.60410
-3
 3.75610

-6
 1.07410

-9
 1.60510

-12
 

0,2 5.59110
-3
 3.74810

-6
 1.07210

-9
 1.81410

-12
 

0,4 5.55510
-3
 3.72410

-6
 1.06510

-9
 1.89110

-12
 

0,6 5.49310
-3
 3.68210

-6
 1.05310

-9
 1.93610

-12
 

0,8 5.40610
-3
 3.62410

-6
 1.03610

-9
 2.26310

-12
 

 

Table 3: MLGFM results for the Error % in du(x)/dx (N=5). 

 

To conclude this example, other two results are shown in Table 4 and Figure 5. The results in 

Table 4 show the values of flux errors for all nodes of the ends of the elements (N=10, p=2) and 

the results of Figure 5 illustrate the errors in the potential and flux obtained with the MLGFM 

(N=20, p=2). It is noteworthy the fact that the errors for the flux are lower than the errors for 

the potential in Figure 5. 

 

x Analitic FEM Error % MLGFM Error % E* 

0 0,8508157177 0.85235299 0.181 0.8508155176 2.35210
-5
 7695.57 

0,1 0,8415693483 0.84309894 0.182 0.8415691505 2.35010
-5
 7744.68 

0,2 0,8139226266 0.81542926 0.185 0.8139224357 2.34510
-5
 7889.12 

0,3 0,7681517897 0.76962041 0.191 0.7681516100 2.33910
-5
 8165.88 

0,4 0,7047141646 0.70613011 0.201 0.7047140004 2.33010
-5
 8626.60 

0,5 0,6242435991 0.62559272 0.216 0.6242434543 2.31910
-5
 9314.35 

0,6 0,5275441284 0.52881300 0.241 0.5275440068 2.30510
-5
 10455.53 

0,7 0,4155819418 0.41675814 0.283 0.4155818467 2.28810
-5
 12368.88 

0,8 0,2894757283 0.29054898 0.371 0.2894756626 2.26910
-5
 16339.79 

0,9 0,1504854995 0.15145373 0.643 0.1504854657 2.24610
-5
 28628.67 

1,0 0 0.00090388 - 0 0 - 

 

Table 4: Comparative Error % for du(x)/dx when N=10 e p=2. 
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Figure 5: Errors for potential and flux (N=20 and p=2). 

 
5.2 One-dimensional Burgers Equation 

The one-dimensional Burgers equation can be written as follows: 
 

)t,x(f
x

)t,x(u

x

)t,x(u
)t,x(u

t

)t,x(u
2

2















 (16) 

 

where u(x,t) denotes the variable of interest,  is a positive constant and its value and physical 

interpretation depends on the problem being studied and f(x,t) is a source term. There are no 

analytical solutions for the Burgers equation, but for some combinations of boundary conditions 

and initial conditions it is possible to obtain the ‘exact’ solution usually written as infinite series. 
For >0 values, it is assumed that there is a function (x,t) such that u(x,t)=(x,t)/x and 

its derivatives are limited for all (x,t). Substituting this transformation of variables in Eq.(16) 

and employing the Hopf-Cole transformation (x,t)=-2ln((x,t)), Cole (1951), then u(x,t) is 

obtained with the following expression 
 

)t,x(

x/)t,x(
2

x

)t,x(
)t,x(u









  (17) 

 

and the non-linear equation (16) becomes linear for (x,t), i.e: 
 

2

2

x

)t,x(

t

)t,x(









 (18) 

 

Employing the Crank-Nicolson rule to approximate the time derivative and writing the Eq. (18) 

for the time (n+1)t we have: 
 

nn2
1n

2

1n )1(t
x

t 



 


  (19) 
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which is a one-dimensional linear differential equation with constant coefficients and time-varying 

excitation. 

However, although the Hopf-Cole transformation probably makes the solution of the Burgers 

equation less laborious, one of the inconveniencies of this method is that the calculation of the 

partial derivative of the auxiliary function (x,t) with respect to x must be precise to obtain the 

correct value of u(x,t). Obtaining an accurate value for the spatial derivatives has always been 

the weak point of many numerical methods used for solving this type of problem. 
To verify the efficiency of MLGFM in solving this type of problem, the procedure described 

above was used in the solution of the Burgers equation with initial conditions given by u(x,0)=sin 

(x), x[0,1] and boundary conditions u(0,t)=u(1,t)=0, t[0,T]. Although an analytical solution 

exists for this problem it is written in the form of a series with infinite terms and according to 

Kutluay at al. (1999) 'It is known that the exact solutions for <0.01 fail because of the slow 

convergence of the infinite series'. 

The results shown in the sequence were obtained from the MLGFM using homogeneous 

meshes with 800 quadratic elements (to compare with others results) for the calculation of the 

GFp and =0.01. The analytical solution for some instants of time is shown in Figure 6 and we 

note that some curves have a strong gradient around x=1. The values shown in Table 5 illustrate 

the influence of the t value in the accuracy of the method. In Figure 7 are carried out compara-

tive studies with literature data. As expected, the errors obtained with the MLGFM are better 

than those obtained by other techniques due the fact that the partial derivatives of (x, t) with 

respect to x are better evaluated by this method. 

 

Figure 6: Analytical solution u(x,t) with =0.01. 
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x 
 

t 
 

Exact 
MLGFM 

t=0.0001s 

 

Error % 
MLGFM 

t=0.001s 

 

Error % 

 

 

0.25 

0.4 0.34191493241 0.341914934409 -0.58410
-6
 0.341915142970 -0.61610

-4
 

0.6 0.26896484531 0.268964846221 -0.33610
-6
 0.268964939590 -0.35110

-4
 

0.8 0.22148191452 0.221481914908 -0.17310
-6
 0.221481954253 -0.17910

-4
 

1.0 0.18819396139 0.188193961547 -0.80010
-7
 0.188193976879 -0.82310

-5
 

3.0 0.07511408388 0.075114083863 0.31910
-7
 0.075114081408 0.33010

-5
 

 

 

0.50 

0.4 0.66071097100 0.660710924366 0.70610
-5
 0.660706085132 0.73910

-3
 

0.6 0.52941826372 0.529418249896 0.26110
-5
 0.529416831502 0.27110

-3
 

0.8 0.43913825066 0.439138246731 0.89610
-6
 0.439137846477 0.92010

-4
 

1.0 0.37442003764 0.374420036702 0.25210
-6
 0.374419942088 0.25510

-4
 

3.0 0.15017900523 0.150179005298 -0.41710
-7
 0.150179011687 -0.43010

-5
 

 

 

0.75 

0.4 0.91026463581 0.910264286572 0.38410
-4
 0.910236334828 0.31110

-2
 

0.6 0.76724328471 0.767243125749 0.20710
-4
 0.767226876523 0.21410

-2
 

0.8 0.64739523496 0.647395162857 0.11110
-4
 0.647387766765 0.11510

-2
 

1.0 0.55605070448 0.556050671324 0.59610
-5
 0.556047278569 0.61610

-3
 

3.0 0.22481124819 0.224811248158 0.15910
-7
 0.224811244712 0.15510

-5
 

 

Table 5: Influence of the t value in the MLGFM solutions (=0.01, p=2 and N=800). 
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Figure 7: Errors in u(0.75,t) for =0.01, p=2, N=800 and t=0.0001s. 
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5.3 Two-dimensional Singular Potential 

Problem: Find the solution u(r,) for: 

 

 ),r(0),r(u  
 

(20) 

 

3

2
2/1

1

),r(0),r(u

),r()2/cos(r),r(u

),r(0
n

),r(u










 
(21) 

      

where ={(r,):0r1;0}; 1={(r,):0r1;=0}; 2={(r,):r=1;0} 
 

and 3={(r,):0r1;=}. This is a problem with analytical solution equal to  
 

 ),r();2/cos(r),r(u 2/1  and presents singularity at r=0.  
 

Fourth order finite elements (p=4) are used to discretize the domain according to the pattern 

shown in Figure 8a. Since this is a singular problem, special finite elements (obtained from the 

analytical behavior of the solution) were used around the singular point. These special elements 

are perfectly compatible with the Lagrangian elements and approach u(r,) with behavior r  for 

01. The formulation of the special elements was detailed by Barbieri (2005) and its geometry 

is shown schematically in Figure 8b. The node 1 is always placed at the singular point and the 

other nodes are numbered counterclockwise and placed on the semicircle (or circle). The radius R 

of such semicircle is small enough to ensure that the singularity is quite well represented. The 

results of this work was obtained using a mesh with 12 subdivisions in the  direction and ar-

ranged in pg (geometric progression) subdivisions with ratio equal to 0.5 in the radial direction 

from r=0.5 to r=R=1.52587910-5 (shaded region in the Figure 8a). 

 

 

 
 

(a) Finite Element Mesh 
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(b) Singular element 
 

Figure 8: Finite Element Mesh for evaluation of the GFp. 

 

Contrary to observed results in other applications, Barcellos and Barbieri (1991) and Maldaner 

(1993), the oscillations of the flux results around the analytical solution are very small, even close 

to the singular point. For (r,)  3 the analytical expression for the flux is u(r,0)/n=0.5r-0.5 

and the flux obtained with the MGGFM was u(r,0)/n0.500005r-0.499999, see Figure 9. Observ-

ing the results for the flux of Figure 10 we note that the best values around the singular point 

were obtained at the inter-element nodes (boundary element mesh). Barcellos and Barbieri (1991) 

also observed this behavior with elements of lower order. 

 
 

Figure 9: Flux at the 3={(r,): 0 r1;=}. 

 

 
Figure 10: Error % for the flux at the nodes in 3={(r,): 0 r1;=}. 
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5.4 Two-dimensional Steady State Heat Transfer 

Problem: Find the solution for: 
 

 20;10r10),r(u  (22) 

0T)u(10,

1000T)u(1,

e

i





 (23) 

 

The analytical solution of this problem is: 
 













iie

ie
i

R

r
ln

)R/Rln(

TT
T),r(u  (23) 

 

with Re=10 and Ri=1. The radial flux u(r,)/r, calculated at r=Ri=1 is the parameter used in 

this example for comparisons with the numerical results. 

The global formulation of the MGGFM is used to solve this problem and, due to the charac-

teristic of the analytical solution, only a circular sector (05/180) is modeled using only one 

element in the  direction and N homogeneous elements in the radial direction with variable p 

(p=2,…,p=8). 

The curves plotted in Figure 11 show the h convergence for the radial flux u(1,)/r ob-

tained with different elements (p=2, p=3 and p=4). Besides showing that the values obtained 

with the MGGFM are much better than the values of the FEM, these results show significant 

reduction of errors when increasing the order of the element (for both methods). The curves of 

Figure 12 show the relative errors, E*=Error%FEM/Error%MGGFM, obtained with the elements of 

order 2, 3 and 4. A mathematical expression of type E*=C(p)Nm can be used to represent these 

errors and the fitted curves valid for N>4 are also shown in this figure. 

 

Figure 11: h convergence for u(1,)/r (dashed line=FEM, solid line=MGGFM). 
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Figure 12: Results for E* (solid line=fit results, dashed line=numeric). 

 

 
 

 
Figure 13: p convergence for u(1,)/r. 

 
Finally, to complete this example, the problem being studied was again solved with homogeneous 

mesh with N=5 and p varying from 2 to 8. The results in Figure 13 show the p convergence for 

the radial flux u(1,)/r. The mathematical expression for the relative error, E*, obtained with 

these data was E*=3.44942e1.46107p with values varying from 64.08 for p=2 to 410941 for p=8. 
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5.5 Two-dimensional Potential Problem 

Find the solution u(x) for the equation: 
 

1y,x1)]x1(y)y1(x)[1n2(n2u n22n2n22n2    (24) 

with n being an integer (n=5 in this example) and with homogeneous Dirichlet boundary condi-

tions. This problem was solved by Barbieri et al. (1998) and he was once again solved with 

MGGFM to show new conclusions based on the results of the flux. Its analytical solution is 

u(x)=(1-x2n)(1-y2n) and the analytical flux at x=(1,0) is equal to -10. 
Due to the problem´s symmetry, only a quarter of the domain is discretized with uniform fi-

nite element meshes and their respective boundary meshes are employed for the evaluation of the 
GFp using the MGGFM, Figure 14.  

 
 

 

 

 

 

 

 

 
(a) Domain (b) Additional Operator, 

k=1. 

(c) Boundary Element 

mesh (p=2) 

(d) 22 Finite Element 

mesh (p=2). 

 

Figure 14: Problem discretization. 

 
The curves of Figures 15 and 16 show the results for the h convergence (h=1/N). These curves 

can be fitted with equations of type 'Error%=C(p)hm(p)' and the values for C(p) and m(p) are 

shown in Table 10. From these results we note that while the rates of p convergence for the FEM 

grow with approximately constant rate, this same behavior does not happen for the results of the 

MGGFM where m(2)=3.861; m(3)=3.939; m(4)=5.879; m(5)=5.996 and m(6)=7.871.  

This behavior is best visualized from the results of the p convergence to the flux in (1,0) illus-

trated in Figure 17. The results of the FEM are always improved with increasing the order of the 

elements and this same behavior does not apply to the MGGFM results. However, the values for 

the relative error, E*, indicated in Table 10 show that for the same element, the results of 

MGGFM are always better than the results of the FEM. 
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Figure 15: h convergente for u(1,0)/n (FEM). 

    

Figure 16: h convergente for u(1,0)/n (MGGFM). 
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 2.576h
5.879
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5 17.876h
4.680
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5.996

 10.389h
-1.316

 

6 3.891h
5.689

 0.01999h
7.871

 194.669h
-2.181

 

 

Table 10: Adjusted curves for the error% in u(1,0)/n and for the Relative Error, E*. 

 

0.1 1.0
h

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E+2

E
rr

o
r 

%

FEM

p=2

p=3

p=4

p=5

p=6

0.1 1.0
h

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

E
rr

o
r 

%

MGGFM

p=2

p=3

p=4

p=5

p=6



  R. Barbieri and R.D. Machado / The Local Formulation for the Modified Green´s Function Method      901 

Latin American Journal of Solids and Structures 12 (2015) 883-904 

 

 

 

 

Figure 17: p convergence for u(1,0)/n (solid line=MGGFM, dashed-line=FEM). 

  

6 CONCLUSIONS 

In this paper the local formulation for the MGFM was shown. With this formulation it is possible 

to obtain good results for the flux at all nodes of the mesh. The formulation shown was meant for 

one-dimensional problems. The extension of these concepts to two-dimensional and three-

dimensional cases is still a topic under study. 

 In Example 5.1 the solution of the wave equation is displayed using the local formulation of 

the method and the results showed: 

-good convergence for the flux in all nodes of the mesh for p> 1; 

-Contrary to our expectations, for p=1 the flux results of the MLGFM are better than the results 

of the FEM, but with small difference; 

-the MLGFM errors for the flux are approximately constant for all nodes of the mesh, and 

-E * values indicate that the change of the quadratic element (p=2) for the cubic element (p=3) 

does not improve its rate of convergence. 

Example 5.2 was directed to the solution of the Burgers equation. This is a nonlinear equa-

tion and the Hopf-Cole transformation and the Crank-Nicolson rule was used to obtain a discrete 

time linear problem. Local MGFM approach was used to solve this equation and the results show 

the influence of t on the accuracy of the method and the good convergence of the method for 

any instant of time. 
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In Example 5.3 the solution of a singular potential problem using the global formulation of 

MGFM is displayed. The meshes used to solve this example were prepared with elements of 

fourth order (p=4) and using specific elements (singular) around the singular point. The results 

showed that: 
 

- the quality of approximations of GFp influences the flux results; 

- the approximation of F(p) with appropriate functions (singular) produce accurate results for the 

flux; 

- no flux fluctuation around the singular point was observed. 
 

Problems 5.4 and 5.5 were solved with MGGFM with the aim of showing some new observations 

on the flux convergence. More research is still needed on this topic to study the small reduction 

in error of the flux when odd elements are used to obtain the GFp. 

 In this paper the FEM was used to obtain GFp and for this reason the MGFM results were 

compared with the FEM results. Comparisons with flux results obtained with other techniques 

are still needed to extend the conclusions on the quality of the flux results shown in this paper.  
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