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Abstract 

For many practical applications in engineering, a complex struc-

ture shows linear elastic behavior over almost all its extension, 

but exhibits confined plasticity contained in some small critical 

regions, e.g. stress concentrations in fillets and sharp internal 

corners. The behavior of C
0
- and C

k
-GFEM is investigated in this 

class of problems.  

The first goal of this study is to verify the actual formulation 

of the C
k
-GFEM for two-dimensional elastoplasticity, as a modi-

fication of the C
0
-GFEM formulation. The C

k
-GFEM is based on 

a set of basis functions with C
k
 continuity over the domain. The 

approximation functions are constructed from a C
k
 continuous 

partition of unity, over which polynomial enrichment functions 

(or any special function) can be applied, in the same fashion as in 

the usual C
0
-GFEM. In this way, the finite element approxima-

tions show continuous responses for both displacements and 

stresses across inter-element interfaces. 

An investigation is performed to assess the behavior of higher-

regularity partitions of unity against conventional C
0
 counter-

parts. The irreversible response and hardening effects of the ma-

terial is represented by the rate independent J2 plasticity theory 

with linear isotropic hardening of material and von Mises yield 

criteria, being considered only monotonic loading and the kine-

matics of small displacements and small deformations. The focus 

herein is to enlighten any possible advantage of smoothness in 

the presence of plastification phenomena, seeking for improve-

ments in capturing the evolution of the process zone. 
 

Keywords 

Generalized Finite Element Method, smooth GFEM-based ap-

proximations, two-dimensional elastoplasticity, convergence anal-

ysis, process zone evolution. 
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1 INTRODUCTION 

Certain local characteristics of boundary value problems, such as high gradient, singularities and 

discontinuities, can be successfully modeled with the use of the generalized finite element method 

(GFEM), since it allows using a priori knowledge about the solution of a problem in the form of 

enrichment functions.  

Several studies have shown that GFEM has been used successfully in linear elastic fracture 

mechanics (Areias and  Belytschko, 2005; Belytschko, 2001; Duarte et al.,  2007; Laborde et al., 

2005; Pereira et. al., 2010; Stazi et al., 2003; Tabarraei  and  Sukumar, 2008). However, a real 

structure is a very complex body with stress states whose values based on the linear elasticity 

may exceed the elastic limits. The works of Kim et al. (2009) and Kim et al. (2012) proposed a 

GFEM with global-local enrichment functions (GFEMgl) to numerically generate proper enrich-

ment functions for three-dimensional problems with confined plasticity. According to Duarte  and 

Kim (2008), the GFEMgl can be potentially more efficient than the standard GFEM or FEM. 

Kumar et al.(2014a) proposed an adaptive coupled finite element (FE) and element free Galerkin 

(EFG) approach used to simulate the nonlinear behavior of materials from two-dimensional sta-

ble crack growth problems, where EFGM has been used only in a region near the crack, while 

FEM has been used away from the crack. In the work of Kumar et al.(2014b), XFEM has been 

extended to simulate stable crack growth by J–R criterion, using finite strain plasticity under 

plane stress condition. They concluded that XFEM is an effective tool for modeling stable crack 

growth in homogeneous and bi-materials as it does not require the conformal meshing.  

The piecewise polynomial partition of unity (PoU) functions used in the conventional in-

stance of the method may be not the most appropriate for some kinds of problems, as in case of 

singular enrichments (Torres et al., 2014). In this context, the Ck-GFEM, which is quite similar 

to C0-GFEM, presents the high regularity of the approximation as an attractive feature. This 

smooth version of GFEM is a mesh-based discretization methodology which brings together high-

er regularity, flat-top property, globally defined coordinates, compact support and no restriction 

regarding the shape of elements and/or clouds. 

The importance of Ck-GFEM comes from the fact that it is more robust than other kinds of 

higher regularity mesh-based approximations. Some C1 approximants applied to problems that 

require such regularity, as Hermitian functions commonly used in thin plate bending problems, 

for instance, are very restrictive and do not favor a systematic procedure for building such func-

tions for general element shapes or to allow p-refinement. Some approaches that exploit some 

benefits of Ck-GFEM approximations in plate bending problems were presented in Barcellos et al. 

(2009), Mendonça et al. (2011) and Mendonça et al. (2013). 

In this context, the goal of this paper is to compare the Ck-GFEM and C0-GFEM perfor-

mances in modeling two-dimensional problems involving elastoplasticity, considering problems 

with stress concentration (e.g. L-shaped domain), i.e., situations where the plasticized zone is 

confined to one or a few regions of the body. These kinds of problems are important due the high 

gradient of deformation field which occurs along the boundary of the process zone, which is diffi-

cult to be represented with coarse meshes and conventional functions of FEM. Thus, the ability 

of the approximation functions with Ck arbitrary inter-element continuity to build continuous 

stress fields can be useful. 
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The irreversible response and hardening effects of the material is represented by rate inde-

pendent J2 plasticity theory with linear isotropic hardening of material and von Mises yield crite-

ria, being considered only monotonic loading and the kinematics of small displacements and small 

deformations. 

The paper is structured as follows. Section 2 briefly describes the C0-GFEM, which is used as 

a starting point for the Ck-GFEM formulation developed in section 3. Section 4 presents the key 

elements on the elastoplasticity model considered herein, section 5 describes the test problems and 

presents the numerical results. Section 6 develops several concluding remarks about the findings.  

 
2 GENERALIZED FINITE ELEMENT METHOD (C

0
-GFEM)   

The GFEM is a combination of the standard finite element method (FEM) with concepts and 

techniques typical of meshless methods. This method presents an aspect of nodal enrichment 

that, in many situations, reduces or avoids the need of localized mesh refinement, making it very 

attractive for several analyzes. 

The GFEM relies on a mesh that is used to define a partition of unit (PoU) and a domain for 

the numerical integration over which the enrichment of the PoU functions is performed. The set 

of PoU functions is employed to ensure the inter-elementar continuity, providing conformity of 

approximations that are improved by nodal enrichment strategy. 

The enrichment functions are linked to individual clouds (patches) of elements around an ar-

bitrary node in order to improve the quality of approximation in that neighborhood. Thus, one 

has the possibility to enrich the approximation only in a region of the problem domain, due to 

the compact support of PoU, without mesh refinement (Duarte et al., 2000), (Barros et al., 2004). 

Moreover, the essential boundary conditions can be imposed exactly as in the standard FEM 

(Strouboulis et al., 2001). 

To build the GFEM approximation functions it is considered, for example, a conventional 

mesh of finite elements defined by N  nodes with Cartesian coordinates        
 

in the domain Ω. In 

plane problems, usually the elements are three node triangles or four nodes quadrilaterals (and 

analogously in three-dimensional meshes). If the enrichment is performed with relation to node   , 

a generic cloud      is defined as the union of all finite elements adjacent to this node. The set 

of the shape functions belonging to each element associated with the node   , compose the func-

tion     on the support of the cloud   . The set of functions    associated to all nodes on the 

domain form a partition of unity (PoU). The enrichment functions related to the node   , are 

denoted by                             
 

 (with      ) and represent a set of q + 1 linearly 

independent functions.  

Enrichment functions can be chosen as polynomial functions, harmonic, anisotropic or even 

functions that are part of the solution of the boundary value problem (Babuska et al., 2002; 

Stroubouliset al., 2000; Melenk and  Babuska, 1996). The local approximation subspaces can be 

denoted as                    
 

 which may also be enriched according to an adaptive method. In 

this study, uniform polynomial enrichments are chosen such that          
 
    , where    
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stands for the space of polynomials of degree less than or equal to p. For example, for p = 2   

(quadratic basis), the set of enrichment functions is  
 

    
    

   
   

    

   
   

    

   
 

 

  
    

   
   

    

   
   

    

   
 

 

  

 

where    are nodal coordinates of an arbitrary node j and     and     are the cloud characteristic 

dimensions around the node in the directions x and y, respectively. 

Thus, the GFEM approximation functions     associated to the node    result from the ex-

trinsic enrichment of PoU, i.e., multiplying the PoU function    with support on the cloud    by 

components of   : 
 

        
 

           
 

  (no sum on j) (1) 
 

This implies an increasing in the number of unknowns per node in relation with those associated 

with the PoU. 

The resulting approximation function     contains features of both functions, that is, the 

compact support of PoU and the approximation feature of the enrichment functions    . The 

structure of GFEM offers more freedom in the choice of approximation functions compared to the 

standard FEM. The extrinsic way of to incorporate the algebraic refinements enables to vary the 

enrichment along the domain without compromising the conformity, which is ensured by the 

compact support of the PoU. 

The generalized global approximation for the displacement on     , denoted as      

              , can be written as a linear combination of approximation functions associated with 

each node. The component   , for example, can be written as: 
 

         
 

   
              

 

   
                     (2) 

 

where   is a vector containing the full set of approximation functions and   is a vector contain-

ing the nodal parameters     and     associated, respectively, with the PoU functions    and the 

enriched functions      . The continuity of the function       on the whole domain is guaranteed 

by the characteristics of the PoU used. 

 
2.1 Model Problem for Two-dimensional Elasticity 

Let a boundary value problem (BVP) defined in a linear elastic domain     , where the strong 

form of equilibrium equations is given by 
 

                           
                                      
                                  

  (3) 

 

where   is the vector containing the stress tensor components,   is the vector of body 

es,   and               denote complementary parts of the boundary   , where Dirichlet and 
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Neumann conditions are defined, respectively;    and    are prescribed displacements and tractions, 

respectively, and   is the unit outward  normal to   . The operator         have their definitions 

adapted to the vector notation considered for   (see Zienkiewicz and Taylor (2005) for example) 

and the superscript T indicates transpose. The Cauchy stress   is related to the displacement    

by the linear elastic relation              , where   is the vector containing the strain tensor 

components end   is the constitutive matrix of the material, which is positive definite. 

The variational form of this problem can be stated as: 

Find        such that: 
 

                                                        (4) 
 

where      and      are Hilbert spaces of degree order 1 (standard Sobolev space of square 

integrable functions whose first derivatives are also square integrable in the Lebesgue sense) de-

fined on the domain Ω. The variational operators are defined as: 
 

                     
 

       (5) 

 

           
 

           

  

       (6) 

 

where               is the vector of displacements,               is the test function vector,   is the 

vector containing the strain tensor components, and    is the thickness of the elastic body (in the 

z reference direction) considered here as constant. 

The Galerkin approximation in Eq.(4), similarly to FEM, results in: 
 

Find     such that:                      , (7) 
 

whit   and   are    being subspaces of finite dimension, wherein the first space is generated by 

the approximation functions and the second one is of test functions;   is composed according to 

Eq.(2) and the component   , for example, of the            is given by: 
 

            
 

   
              

 

   
                     (8) 

 

where   is a vector of nodal parameters similar to vector  . 

The only difficulty in the GFEM implementation is that the enriched basis can be linearly 

dependent, so that the system of equations resulting from Eq. (7) is positive semi-definite. The 

linear dependence occurs when the PoU and enrichments are both polynomial functions. This 

problem can be avoided by careful choice of functions     (Oden et al., 1998), constraints in PoU 

(Melenk and  Babuska, 1996), or the system can be efficiently solved by the numerical strategy 

proposed in Duarte et al. (2000) and Strouboulis at al. (2001). 
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3 ARBITRARY CONTINUOUS FUNCTIONS (CK-GFEM)  

Ck-GFEM is quite similar to C0-GFEM, except that it builds an arbitrarily smooth PoU over 

finite element meshes (Duarte et al., 2006). Although this is not a meshless method, it preserves 

several attractive features of meshless approximations, such as the high regularity of approxima-

tion and partition of unit property. The Ck-GFEM is also important because it can be efficiently 

applied to higher-order problems, as the plate problems of Kirchhoff and Reddy, which require 

solutions of continuity at least C1. 

The PoU functions can also be built as C functions in case of clouds with convex support 

and considering exponential edge functions (the original Edwards (1996) procedure). In clouds 

with non-convex support they can be up to k-times continuously differentiable at the concave 

nodes, with k arbitrarily large, and infinitely differentiable in the rest of the cloud. 

The technique used for the construction of PoU functions in the problems under analysis 

(Section 5), is described below for clouds with convex support and exponential edge functions 

(Edwards method). 

Let us consider a conventional triangular finite element mesh defined by N nodes with coor-

dinates        
 

 in the domain Ω, and a set of weighting functions         
     , with  j = 1, ..., 

N. Each one is associated to a cloud    as its compact support. Using Shepard’s formula (Shep-

ard, 1968), each PoU function is obtained by: 
 

      
     

          
                       . (9) 

 

Herein, triangle elements are considered aiming to employ them as integration cells directly, 

noting that the procedure is quite general for different element shapes or cloud configurations. 

It can be seen that the set           
 

 is such that         
     ,     and           

   

      and any compact subset of Ω intercepts only a finite number of supports. Therefore, 

      is a partition of unity and its regularity depends only on the regularity of the weighting 

functions constructed to ensure the required continuity.  

The weighting functions with convex support can be built from the product of the cloud edge 

functions             associated with the cloud    and defined in terms of parametric coordinates 

   normal to each edge n of de cloud (Barcellos et al., 2009 and Duarte et al., 2006) as follows: 
 

               
  

   , (10) 
 

where    is the number of edge functions to the cloud   . 

Thus, the Shepard equation is used to define a partition of unity from weighting functions 

continuously differentiable, using exponential edge functions. According to Edwards (1996), a 

cloud edge function is a strictly positive function inside the cloud which vanishes, together with 

all its derivatives, towards an edge, rendering a   
      weighting function. 

The edge function used in this work is exponential with unitary value at the cloud node and 

its decay rate is controlled by a parameter        
    

 
            , where      is the normal dis-
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tance from node j to the edge n. For these two conditions, was used the following function edge 

(Barcellos et al., 2009): 
 

               
       

  
        

           
 , (14) 

 

where        
     

    
 

 

 
 and                 is the distance between the position   and the 

edge n,    is the edge midpoint, and    the normal vector to the edge directed into the cloud.   

and   are positive arbitrary constants. However, numerical experiments have shown that the 

most appropriate values are       and      , as suggested by Duarte et al. (2006) and Torres 

(2012). Therefore, at cloud node the function has the value 
 

               
  

    

     
 

 
 

 (15) 

 

which is the same for every edge n of the cloud    and imposing the constraint                , 

one gets    
 
    

     
 

 
 

. 

It should be remarked that different choices of PoU functions are possible (it depends on the 

choice of the edge functions (Barcellos et al., 2009)), leading to different kinds of approximation 

functions.  

However, besides exponential functions, many functions meet the requirements of having de-

rivatives null on the edge. For example, in Barcellos et al. (2009) polynomial edge functions were 

subjected to numerical investigations. In this case of polynomial cloud edge functions, differently, 

the continuity is limited independently of the cloud geometry. 

Herein, exponential edge functions are used, following the procedure described in Barcellos et 

al. (2009) which guarantee C() approximation for meshes with only convex clouds. On the 

contrary, in the case of non-convex clouds, it is necessary to replace the edge functions of a pair 

of non-convex edges with a single new edge function obtained through a boolean product 

(Rvachev and  Sheiko, 1995) before performing the weighting functions computation, as proposed 

by Duarte et al. (2006). Therefore, the resulting PoU is at least k-times continuously differentia-

ble, and the resulting approximation functions of the product of Shepard PoU with the enrich-

ment functions will have the same continuity, since the enrichments are at least also Ck.  

 
4 TWO-DIMENSIONAL PLASTICITY 

This section presents the equations that govern the classical plasticity in the two-dimensional 

context, which can be found in Chen (1988), Simo and Hughes (1998) and Souza Neto et al. 

(2008). 

The formulation adopted is based on the classical rate independent J2 flow theory for small 

strain. Its main features are: von Mises yield criteria, linear isotropic hardening of material, hy-

pothesis of associativity to the hardening law and normality rule for plastic flow. The Newton-

Raphson was the iterative and incremental scheme adopted. 
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Initially the isotropic hardening will be used, however, kinematic hardening and cohesion 

models can easily be introduced to the algorithm. The plastic flow is regarded as an irreversible 

process and is characterized in terms of the history of the following variables: strain tensor  , 

plastic strain tensor    and isotropic hardening internal variable  , related to the evolution of 

plastic deformation. 

Considering the additive decomposition of the total strain tensor        , the isotropic 

linear elastic constitutive tensor  , the deviatoric stress tensor s and the yield stress   , the equa-

tions that govern the model are: 
 

1) elastic stress-strain relationship:          ; 

2) von Mises yield criterion:                   , where       e   is the modulus plas-

tic of  isotropic linear hardening;  

3) flow rule:                , where         ; 

4) hardening law:          ; 

5) accumulated plastic deformation rate:      
 
   ; 

6) Kuhn-Tucker complementary conditions:    ,         ,     ; 

7) consistency condition:            (if          , where    is the yield function rate. 
 

The parameter     is a non-negative function, called consistency parameter, which repre-

sents the plastic flow rate satisfies the Kuhn-Tucker and consistency conditions. 

 
5 NUMERICAL RESULTS 

In this section, two numerical experiments are conducted. The goal is to compare the Ck-GFEM 

and C0-GFEM performances for two-dimensional elastoplastic problems. The elastoplasticity al-

gorithm was introduced in a code developed for linear elastic fracture mechanics (Torres, 2012). 

The numerical experiments were conducted considering regular and uniform triangular mesh-

es, with simplex elements, for which only convex clouds occur, in such a way that the functions 

are C continuous for the smooth version of GFEM. 

The algebraic refinement consists of uniformly applied polynomial enrichment functions of 

degrees p = 1 to 4. The numerical integration on the elements was performed by the Wandzura’s 

symmetric quadrature in triangles (Wandzura and Xiao, 2003) with 175 points. The same quad-

rature was used for the Ck-GFEM and C0-GFEM independently of the p-enrichment applied. It is 

worth noting that this amount of integration points is used here only for sake of evaluation, to 

reduce the errors due to integration from discretization errors to negligible levels. For integrations 

in the Neumann boundary was used the Gauss-Legendre quadrature with 25 points, for each ele-

ment edge.  

 
5.1 Internally Pressurized Cylinder 

The first example is a classical problem of a long thick-walled cylinder subjected to a gradually 

increasing internal pressure. The dimensions of the problem, the material parameters and the 

finite element mesh adopted are shown in Figure 1. The cylinder is discretized by 64 axisymmet-
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ric elements. The maximum pressure, P, used to this problem was 0.18 GPa. Nine uniform pseu-

do time steps were used for incremental analysis. 

Figure 2 shows the radial displacement at outer surface of the cylinder versus applied pres-

sure computed by the C0-GFEM and Ck-GFEM for b = 1, 2, 3 and 4, that represents the poly-

nomial degree of reproducibility of the proposed GFEM approximation subspace. Figure 3 and 

Table 1 show the norm of the relative error of the radial displacement at outer face versus de-

grees of freedom obtained via C0-GFEM and Ck-GFEM for the maximum pressure level (P = 

0.18 GPa). On notice that b = p +1 to C0 PoU and b = p to Ck PoU, where p  is the degree of 

the polynomial enrichment, as identified in Mendonça et al. (2011). The relative error of the radi-

al displacement is computed by                , where     and   are the exact (Hill, 1950) 

and approximated displacements, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Internally pressurized cylinder. Material properties and finite element mesh adopted. 

 
It can be observed that the C0-GFEM and Ck-GFEM results are close to the analytical value and 

exhibit similar errors for the same values of b.  As expected, the worst values of the approxima-

tions of displacement occur for b = 1. According to Figure 2, the approximation of the displace-

ment for b =1 worsens at pressures above the yielding pressure onset, whose analytical value is 

0.103 GPa (Souza Neto et al., 2008). This suggests that for this problem (choice of mesh, PoU, 

enrichment function) both methods do not approach well the plastic solution when b = 1. 

The circumferential stress obtained at integration points for P = 0.1 GPa (elastic solution) 

and P = 0.18 GPa (elastoplastic solution) are plotted for b = 2, 3 and 4 in figures 4 and 5 respec-

tively, together with Hill’s solution. The C0-GFEM and Ck-GFEM results are very close to the 

analytical solution. The worst results occur for C0-GFEM when b = 2, where p = 1. For the 

 von Mises Model 

Young’s modulus: E = 210 GPa, 

Hardening modulus: H = 0.0, 

Poisson ratio:  = 0.3, 

Uniaxial yield stress:    = 0.24 GPa. 

100 mm 

200 mm 

P 

100 mm 

1000 mm 
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complete loading in case of P = 0.18 GPa, the plastic front reaches approximately 159.79 mm 

(analytic value of the radius of plastic zone). The approximate position of the elastoplastic transi-

tion zone can be visualized by the position of sign change in the slope of the curves in Figure 5. 
 

 
 

 

Figure 2: Radial displacement versus increasing pressure for the problem of Figure 1.  

 

 

 

 

Figure 3: Norm of relative error for the radial displacement at outer face 

versus degrees of freedom for the problem of Figure 1 for P = 0.18 GPa. 
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5.2 L-shaped Domain 

The L-shaped domain is a classical problem of the elasticity theory for which an analytic solution 

is known (Szabo and Babuska, 2011). An elastoplastic version of this problem is considered here 

aiming (a) to verify the implementations for a general two-dimensional loading condition, (b) to 

investigate the effects of smooth discretization in the approximate stress fields, and (c) to com-

pare the evolution of a process zone at the reentrant vertex neighborhood for the two kinds of 

regularity considered. 

 

DOF 

C
0
-GFEM C

k
-GFEM 

b |er(u)| b |er(u)| 

90 1 0.05492 (5.49%)   

270 2 0.005871 (0.58%) 1 0.03653 (3.65%) 

540 3 0.006327 (0.63%) 2 0.005545 (0.55%) 

900 4 0.006915 (0.69%) 3 0.006337 (0.63%) 

1350   4 0.006915 (0.69%) 

 

Table 1: Relative error values for the radial displacement considering different  

degrees b for the problem of Figure 1 for P = 0.18 GPa. 

 

 

 
Figure 4: Circumferential stress versus radial coordinate to 

P = 0.1 GPa (elastic solution) for the problem of Figure 1. 
 

The dimensions, material parameters, loading and mesh (Mesh 1) used in this example are shown 

in Figure 6. The analysis is carried out assuming plane strain conditions. The domain of the prob-

lem is discretized by 96 elements. Ten uniform pseudo time steps were used for incremental anal-

ysis. The numerical results are compared with a overkill solution from ANSYS® (Reference 1) for 
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which was used a very refined regular and uniform triangular (3 nodes) mesh with    60 000 ele-

ments and 60 799 degrees of freedom. It should be remarked that for the L-shaped domain prob-

lem, considering elastic material, an infinity stress value occurs at the reentrant corner for the 

minimum amount of applied external force. This means that in the physical problem, in case of 

elastoplastic material, the yield criteriais reached once any external force is applied. Of course, for 

discretized problems, this fact is generally not true.  

 

 

Figure 5: Circumferential stress versus radial coordinate to P = 0.18 GPa 

 (elastoplastic solution) for the problem of Figure 1. 
 

 

 

 

 

 

 
 

Figure 6: L-shaped domain. Material properties and finite element mesh (Mesh 1).  

The blue region is defined to allow the computation of a local deformation energy. 
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Uniaxial yield stress:    = 620 MPa.     Surface forces F2 = 250 N. 
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The strain energy, defined as                     
 

      , is used as a global convergence 

measure to verify the numerical implementation. Another mesh with 384 triangular elements 

(Mesh 2, see Figure 7), was used in this verification, where the blue region is defined to allow the 

computation of a local deformation energy. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Finite element mesh (Mesh 2).  
 

Tables 2 and 3 show values of the strain energy obtained by the Ck-GFEM and C0-GFEM for 

different values of b, and to Meshes 1 and 2. Table 2 shows the strain energy calculated through-

out the domain and Table 3 shows the correspondent value for the blue region of the meshes 

shown in figures 6 and 7, which approximately contains the plastic zone. One can see that the 

results obtained by the C0-GFEM (Mesh 2) is greater than Reference 1 values, for some degrees 

b, which would indicate the reference solution is still inappropriate. For this reason the numerical 

results are also compared with the overkill solution from ANSYS® which is similar to the first 

one but with triangles of 6 nodes (Reference 2), totaling 241 599 degrees of freedom. It is easy to 

see the present GFEM solutions converge to this new reference solution (Reference 2) as the de-

gree b increases. Although the results for C0 are closer to the reference value as the degree b in-

creases, in both situations the results of Ck for b = 1 are better, indicating some higher ability of 

the smooth functions of to capture the plastification for lower degree approximations. Latter, the 

evolution of the plastic zone will be investigated trying to confirm this hypothesis. 

Table 4 lists the number of iterations in the Newton-Raphson scheme required in each load-

ing step obtained by C0-GFEM and Ck-GFEM (Mesh 1), for b = 1, 2, 3 and 4. The table indi-

cates that the total numbers of iterations required for both approaches are almost the same. The 

loading level for which the plastic flow threshold is reached has number of iterations different 

from 1. It is possible to note (see Table 4)  that for b = 2 and 3 the plastic flow starts at the 

same loading level for both conventional C0-GFEM and smooth GFEM. However, for the lower 

approximation degree (b = 1) the Ck-GFEM is capable of detecting hardening two load steps 

before the conventional counterpart, thanks to the derivatives of the Ck-PoU, which are not con-

stant inside the elements. Thus, it can be seen that in case of lower degree approximations, even 

for coarse meshes, the Ck-GFEM captures the plastic flow in a lower loading level if compared to 

the C0-GFEM. In case of elastic materials, it is known the appropriate patterns of mesh refine-

D 

G 
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ments which should be applied close to these points. However, for more general kinds of geomet-

ric details, or in case of elastoplastic materials, the definition of an optimal mesh-refinement could 

be a difficult task. From these facts, it seems to be interesting to use higher regularity functions 

around reentrances, or other geometrical details. 
 

 

       (/10
-4
) Reference   

 b 1 2 3 4 - 

Mesh 1 
C

0
-GFEM 1.9569175 2.7690565 2.9777273 3.0790066 Reference 1 

3.0868053x10
4 

C
k
-GFEM 2.0477177 2.6521702 2.8549167 2.9365689 

Mesh 2 
C

0
-GFEM 2.3747066 2.9808580 3.0891456 3.1421370 Reference 2 

C
k
-GFEM 2.4450268 2.9151004 3.0312286 3.0729354 3.1723654x10

4
 

 

Table 2: Values of total strain energy for b = 1, 2, 3 and 4. 

 

 

       (/10
-4
) – Close to the reentrance  Reference 

 b 1 2 3 4 - 

Mesh 1 C
0
-GFEM 0.555022 1.005259 1.105433 1.148006 Reference 1 

1.1576717x10
4
  C

k
-GFEM 0.673580 0.985863 1.076643 1.106115 

Mesh 2 C
0
-GFEM 0.819017 1.111261 1.165939 1.185627 Reference 2 

 1.1920987x10
4
   C

k
-GFEM 0.892644 1.097050 1.148191 1.160055 

 

Table 3:  Strain energy content within the sub-domain close the reentrance for b = 1, 2, 3 and 4. 

 

 

 Number of iterations 

b 1 2 3 4 

Reference 2 Load 

step 
C

0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM 

1 1 1 1 1 1 1 1 1 3 

2 1 1 1 1 1 1 3 1 4 

3 1 1 2 2 3 3 4 3 3 

4 1 3 4 4 3 4 4 4 3 

5 1 3 4 4 4 5 4 4 3 

6 4 4 4 5 5 5 5 4 3 

7 3 4 4 4 5 4 5 4 3 

8 2 4 5 4 5 4 4 4 3 

9 3 4 4 5 5 4 6 8 3 

10 4 4 5 5 5 5 6 8 4 

Total 21 29 34 35 37 36 42 41 32 

 

Table 4: Number of iterations required at each loading step for b =1, 2, 3 and 4 to Mesh 1.  
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The respective numbers of degrees of freedom used in C0-GFEM and Ck-GFEM analyses for dif-

ferent values of b are shown in Table 5. 

Table 6 shows values of displacements in the y direction at points B and C for the Mesh 1 

(see Figure 6) and the relative errors obtained by the Ck-GFEM and C0-GFEM for different de-

grees b. It can be noted that the convergence of both forms of GFEM when the degree b increases 

is clear, and it is seen that only for b = 1 the values obtained by Ck-GFEM exhibits smaller er-

rors than those obtained by C0-GFEM. These results suggest that the approximation subspace 

generated by the Ck-GFEM is "less flexible" than that for the C0-GFEM since, for the same 

number of degrees of freedom and higher degrees of b, the error obtained by Ck-GFEM increases. 

This observation agrees with the understanding that Ck 
 C0.  

 

 C
0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM C

0
-GFEM C

k
-GFEM 

b 1 2 3 4 

DOF (Mesh 1) 130 390 390 780 780 1300 1300 1950 

DOF (Mesh 2) 450 1350 1350 2700 2700 4500 4500 6750 

 

Table 5: Quantities of degrees of freedom for b =1, 2, 3 and 4 to Meshes 1 and 2. 

 

 

 

 
b 

uy (|er(uy)|) 

point B point C 

C
0
-GFEM 

1 

2 

3 

4 

0.3568 (34.80 %) 

0.4900 (10.46 %) 

0.5251 (0.405 %) 

0.5433 (0.073 %) 

0.6015 (42.56 %) 

0.9363 (10.59 %) 

1.0090 (3.657 %) 

1.0420 (0.506 %) 

C
k
-GFEM 

1 

2 

3 

4 

0.3721 (32.01 %) 

0.4719 (13.77 %) 

0.5058 (7.582 %) 

0.5197 (5.042 %) 

0.6440 (38.50 %) 

0.8997 (14.09 %) 

0.9683 (7.543 %) 

0.9954 (4.955 %) 

Reference  2 - 0.5473 1.0473 

 

Table 6: Values of displacements in the y direction at points 

B and C (Figure 6) and relative error (in parentheses). 

 

Figure 8 and 9 shows pointwise values of  equivalent  stress over the line DG in the meshes 1 and 

2, respectively (see Figure 6 and 7), obtained by the Ck-GFEM and C0-GFEM, for b = 1, 2, 3 

and 4.  Whereas that in the C0-GFEM was performed an average of nodal values, clearly Ck-

GFEM and C0-GFEM are not confronted with the same rigor. In general, the results obtained by 

Ck-GFEM are closest to the reference solution (Reference 2) when compared with the results ob-

tained by C0-GFEM. For b = 3 and 4, the right side of the curves for Ck-GFEM is already good 

and the greatest difference occurs at the extreme left for both meshes.  
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The figure shows that better results could be achieved with a refined mesh. For example, the 

use of a graded mesh would capture singularity at a lower loading level, and therefore the plastic 

flow. Additionally, an algebraic refinement consisting of non-uniformly applied polynomial en-

richment functions, such as considering higher b degree towards the reentrance, would also be 

used, or even another kind of enrichment function. However, the costs are reduced using a coarse 

mesh and smaller values of b, and in this case the Ck-GFEM presents better results compared to 

C0-GFEM.  

 

  

  
 

Figure 8: Values of equivalent stress over the line DG to Mesh 1 (see Figure 6). 

 

It can be noted that for Mesh 2 and b = 4 the difference in equivalent stress at the extreme left 

point of the line DG is still very large, as the exact solution is singular, due to the linear harden-

ing, and only polynomial basis functions were used, without any special refinement toward the 

reentrant corner. Then, for verification purposes a geometric mesh (see definition in Szabo and 

Babuska, 2011) with 72 triangular elements  (Mesh 3, see Figure 10), was used in this verifica-

tion. Figure 11 shows pointwise values of  equivalent  stress over the line DG in Mesh 3, obtained 

by the Ck-GFEM and C0-GFEM, for b = 1, 2, 3 and 4.  In general, the results obtained by Ck-

GFEM and C0-GFEM are similar, and for b = 3 and 4, the curves agree very well, even at the 
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extreme left point. Note that although the exact solution is infinite at point D, the reference solu-

tion is finite at this point, since it is numerically calculated and uses a base that belongs to a 

space of regular functions. Figure 12 shows the relative error of equivalent stress at D point, with 

respect to the reference solution, versus degrees of freedom obtained via C0-GFEM and Ck-

GFEM. It is observed that the convergence in geometric mesh is much faster than in other ones, 

as expected.  

 

  

  

Figure 9: Values of equivalent stress over the line DG to Mesh 2 (see Figure 7). 

 
Some influence of smoothness can also be seen from the geometric aspect of the process zones for 

different degrees b at the end of loading. Figure 13 shows distributions of integration points 

where the yield condition was reached for the complete loading. This figure compares the Ck-

GFEM and C0-GFEM performances considering the high gradient of deformation field that oc-

curs in the plastic zone. The results suggest the ability of the approximation functions with arbi-

trary inter-element continuity to represent the plastic zone more properly than the C0, mainly for 

lower degree approximations, as early mentioned (see reference solution in the Figure 14). 
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Figure 10: Finite element mesh (Mesh 3).  

 

 

  

  

Figure 11: Values of equivalent stress over the line DG to Mesh 3 (see Figure 10). 
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Figure 12: Relative error of equivalent stress versus degrees of freedom for the problem of Figure 6. 
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Figure 13: Locus of integration points for which the yield condition was reached, for the problem of Figure 6. 
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6 CONCLUSIONS 

The aim of this study was to verify the GFEM implementation for two-dimensional 

elastoplasticity, and after that, compare through numerical experiments the Ck-GFEM and C0-

GFEM performances in problems with confined plasticity based on J2 plasticity theory. For the 

two problems analyzed such comparison was performed using local and global convergence 

measures.  

The results presented for the pressurized cylinder problem show that the quality of the stress 

is almost the same for both C0-GFEM and Ck-GFEM, for the same degree of the approximation 

b. That is expected considering that this problem is essentially one-dimensional.  

On the other hand, the results presented for the L-Shaped problem suggest that the Ck-

GFEM furnishes better approximations for the plastic region boundary and the equivalent stress 

values, mainly in the neighborhood of the reentrance, when compared with C0-GFEM.  Further-

more, for b = 1 the Ck-GFEM presents better results when compared to those obtained by C0-

GFEM. This observation comes from the fact that the Ck PoU functions have non-constant de-

rivatives inside the elements, differently from C0 tent functions, which favor capturing much lo-

calized features even using coarse meshes. Then, as can be seen in Table 4 (for  b = 1), since the 

smooth PoU functions enable the detection of hardening for smaller load if compared to the C0 

continuous counterpart, it can be argued that the Ck PoU functions around critical points are 

more appropriate for determination of a load level with cause plastic flow in the structure.  

Finally, these are the first exploratory results towards a larger work which aims to use the 

Ck-GFEM for composing local problem of the Global-Local GFEM (GFEMgl). One of the next 

steps of this research is to keep the process of checking of the L-shaped problem, where investiga-

tions will be conducted to reduce costs by applying smooth PoU functions only in the region of 

the recess, using coarse mesh and small b.  

 

 
 

Figure 14: Contour of the plasticized region obtained from the reference solution for the complete loading.  
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