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Abstract 
The objective of this paper is representation of an analytical solu-
tion to calculate transmission loss (TL) of an arbitrarily thick 
cylindrically orthotropic shell, immersed in a fluid medium with a 
uniform external airflow and contains internal fluids. The shell is 
assumed to be infinitely long and is excited by an oblique plane 
wave. The displacements are expanded as cubic functions of the 
thickness coordinate to present an analytical solution based on 
Third-order Shear Deformation Theory (TSDT). Equations of 
motion of the shell are then obtained using virtual work method. 
By solving shell vibration as well as acoustic wave equations sim-
ultaneously, the exact solution for TL is obtained. Predictions 
with the presented models are compared with those of previous 
models (CST and FSDT) for thin shells. Similar results are 
achieved as the effects of shear and rotation on TL are not notice-
able in a thin shell. However, the model introduced here exhibits 
more accurate results for thick shells where the shear and rotation 
effects become more significant in lower R/h ratios. Additionally, 
the effects of related parameters on TL such as material and geo-
metrical properties are discussed. 
 
Keywords 
Orthotropic shells, Transmission loss, Third order shear defor-
mation theory, Acoustic. 
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Nomenclature 
    

3 1,c c  Speed of sound in external and cavity medium  TL  Transmission Loss 

E  Module of elasticity ( 1 2 3, ,u u u ) Displacements of a point on the plane h =3 0  

rf  Ring frequency V  Velocity of the external flow  

cf  Critical frequency IW  Incident power flow per unit length  

G  Shear stiffness TW  Transmitted power flow per unit length  

h  Shell wall thickness a  Incident angle 

1
nH  

Cylindrical Henkel functions of the first kind of 
integer order n 

a amax min,  Critical angles of incidence 

2
nH  

Cylindrical Henkel functions of the second kind 
of integer order n 

dK  Virtual kinetic energy 

nI  Mass inertia dU  Virtual strain energy 

nJ  
Cylindrical Bessel function of the first kind of 
order n 

dV  Virtual potential energy 

k  Wave number en  Neumann factor 

,r zk k  Wave numbers in h3 and h1  direction ( h h h1 2 3, , ) Displacements of the shell in the radial, cir-
cumferential and axial directions 

1M  Mach number u  Poisson’s ratio 

n  Circumferential mode number w  Angular frequency 

0P  Amplitude of the incident wave r  Mass density of shell per unit mid-surface area 

1
IP  Acoustic pressures of the incident wave r r3 1,  Density of external and internal medium  

1
RP  Acoustic pressures of the reflected wave sij  Stress components 

3
TP  Acoustic pressure of the transmitted wave tij  Strain (shear strain) components 

iq  Transverse load on the surface of the shell t  Average power transmission coefficient  

ijQ  Orthotropic reduced stiffness coefficients fi  Rotations of transverse normal on plane 3 0h =  

R  Radii of cylinder   Laplacian operator 

t  Time W0  Mid-surface of the shell 
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1 INTRODUCTION 

Acoustic transmission is investigated in this study through an arbitrarily thick orthotropic cylinder 
of infinite length, which is excited by a diffuse field. This issue has been addressed in the literatures 
to a large extent. Several attempts have performed significant studies on isotropic, orthotropic and 
laminated fiber-reinforced composite shells. Smith (1957) developed a theoretical study in isotropic 
cylindrical shells taking into account inward-traveling wave as an only parameter. TL was then 
introduced by the same author as the ratio of absorbed power to incident power per unit length. 
White (1966) analyzed sound transmission into finite cylindrical shells and obtained two important 
characteristics, namely ring frequency and coincidence frequency, with maximum values of the ob-
tained TL. Koval (1976 and 1979) utilized displacement field of Nelson et al. (1958) to show math-
ematical models for estimation of the TL of oblique plane sound waves through an orthotropic infi-
nite shell. The effects of membrane and bending were considered as well, though transverse shearing 
and rotational inertia were not taken into account. The effect of orthotropic behavior on TL was 
parametrically studied for the shell’s elastic properties along circumferential and axial directions. 
The main feature of his contribution was considering external airflow, external plane wave with an 
incident angle and internal pressure of the cylindrical shell. Transmission of airborne noise was 
studied by this solution through isotropic and orthotropic fuselage under flight conditions using 
impedance method. An analytical model was suggested by Koval (1980) for predicting TL of lami-
nated composite infinite cylindrical shells excited by an oblique plane wave. Transverse shearing 
and rotational inertia were not considered in this research work. Blaise et al. (1991) extended Ko-
val’s (1979) work and followed an orthotropic shell excited by an oblique plane sound wave with 
two independent incident angles for calculation of the diffuse field transmission coefficient. They 
compared the numerical results with Koval’s results and found some numerical errors in his work. 
In their study, they used a Donnell–Mushtari's displacements field for orthotropic cylinders ignoring 
transverse shearing and rotational inertia. Diffuse field transmission coefficient was calculated based 
on two independent incident angles. Moreover, they extended definition of the ring and critical fre-
quencies to an infinite orthotropic shell excited by a plane wave. Furthermore, a model was devel-
oped for acoustic transmission of the oblique incidence of multi-layered cylindrical shells (Blaise et 
al., 1992). Finally, the same authors presented a new model taking into account 3D displacement 
fields in thickness for the acoustic transmission through an orthotropic multi-layered infinite cylin-
drical shell (Blaise et al., 1994). Tang et al. (1996) studied sound transmission through infinite cy-
lindrical sandwich shells illuminated an oblique plane wave with two different incident angles. They 
presumed same Blaise's assumptions for incident angles and acoustic media. The effects of external 
airflow and pressure difference between inside and outside shell surfaces were considered in their 
study for different fluids in both sides of the shell. They utilized first order shell theory for thick 
shells to calculate the TL. 

Lee and Kim (2002 and 2003) calculated the sound transmission in cylindrical shells using ana-
lytical and experimental models. The inside cavity was assumed to be anechoic, whereas the inci-
dent wave was a plane wave. The shell vibration motions were described by the Love’s equation. 
They considered all three displacement fields and both transverse and in-plane equations to depict 
the shell motion. They applied a convergence algorithm to calculate TL. Eventually, they could 
present a comparison between analytical and experimental models. Ghinet et al. (2006) developed 
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two models for calculating diffuse field transmission into composite laminate and sandwich compo-
site infinite cylinders. They considered membrane, bending, transverse shearing as well as rotational 
inertia effects and orthotropic ply angle of the layers in both models. 

Classical shell theory (CST) was utilized in most of the above citations to model the shell vibra-
tion. However, it cannot be used for thick shells and even thin shells when the number of circumfer-
ential waves increases as the result of neglecting shear deformation and rotary inertia effects in 
CST. Implementation of CST for thick and relatively thick shells can cause significant errors in 
such cases. An exact solution was found by Daneshjou et al. (2007, 2008 and 2009) more recently in 
a series form based on CST and first order shear deformation theory (FSDT). They considered all 
three displacements of the shell for orthotropic and laminated composite cylindrical shells. They 
also showed that considering the effects of shear and rotation in FSDT for thin shells leads to re-
duction of TL in high frequency range in comparison with CST. Just recently, Daneshjou et al. 
(2010) proposed an improved model for sound transmission through relatively thick FGM cylindri-
cal shells based on third order shear deformation theory (TSDT). In addition, they have shown that 
for relatively thick FGM shells where the shear and rotation effects become more significant in low-
er R/h ratio, TSDT presents more accurate results. 

The existing literature lacks a comprehensive work on sound transmission of thick orthotropic 
cylindrical shells. In order to modify previous studies, noting that the best presented model in liter-
ature can not include the proper modeling for thick shells due to its assumptions on the straightness 
and normality of transverse normal during deformation. Therefore, in this paper it has been tried to 
use third order shear deformation theory (TSDT) which relaxes these assumptions by expanding 
the displacements as cubic functions of the thickness coordinate. Thus, this paper presents a novel 
and accurate modeling of the acoustic transmission of a thick-wall orthotropic cylindrical shell with 
subsonic external flow based on TSDT. Then, the obtained results are compared with those availa-
ble in the literature. The comparison reveals a good agreement. This paper also intends to quantify 
the effects of orthotropic cylindrical shell characteristics on TL. At last, the numerical results are 
used to address the effects of geometrical properties and material properties. 
 
 
2 STATEMENT OF THE PROBLEM 

Figure 1 depicts an orthotropic cylindrical shell of infinite length, radius,R , wall thickness,h and 
mass density of shell per unit mid-surface area, r, which is irradiated to an oblique plane wave with 

the incident angle of a  from outside. A uniform external airflow at velocity V  in the exterior fluid 

medium impinges on the shell. Moreover, ir  and ic  with subscripts 1 and 3 are used respectively 

to introduce external and internal density and also the speed of acoustic media. Also, the interior 
side of the shell is assumed to be anechoic, which means that only inward-traveling wave exists. As 

shown in the Figure 1, ( 1 2 3, ,h h h ) denote the orthogonal curvilinear coordinate system where the 

1h  is coincident with the axis of cylindrical shell, while 2h  and 3h  are circumferential and thick-

ness directions, respectively. 
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Figure 1: Schematic diagram of the cylindrical shell 

 
3 THEORITICAL FORMULATIONS 

Particular assumptions are considered in developing a thick shell theory as follows (Reddy, 2003): 
(1) The transverse normal is inextensible (i.e. 33 0e = ). 

(2) There is no reason for straightness and normality of a transverse normal during deformation. 
(3) The transverse normal stress is negligible in order that the plane stress assumption cannot be 
considered. 
These assumptions will be used in formulation of the problem. 
 
3.1 Kinematic relations 

For the cylindrical shells, the strain-displacement relation can be presented as (Qatu, 2004): 
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whereR is the radii of cylinder and ( 1 2 3, ,U U U ) represent the shell displacements along ( 1 2 3, ,h h h ) 

coordinates. It should be mentioned the only assumption made here is the small displacements. No 
other assumptions are considered in this formulation. 
 
3.2 Stress – strain relations 

The stress-strain relations for an orthotropic cylindrical shell can be presented by the Hook’s law as 
(Chakrabartiet al., 2013): 
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where ijs  and ije  denote stress and strain components in the orthotropic layer and ijQ , denotes 

the in-plane-stress reduced stiffness constants that are defined in terms of material properties of the 
orthotropic ply, which can be defined as: 
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where 11E  and 22E  are respectively the module of elasticity in 1h  and 2h  directions, while 23G , 

13G  and 12G  are the modules of rigidity and 12u
 and 21u  represent the Poisson’s ratios. 

Relaxing the straightness and normality of a transverse normal during deformation, the dis-
placement field for third-order shear deformation theory represented as (Lee and Reddy, 2004, 
Chakrabarti, 2013): 
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(4)

where ( 1 2 3, ,u u u ) are the displacements of a point on plane 3h , ( 1 2,  f f ) are the rotations of trans-

verse normal. The constant 1C  is given by = 2
1 4 / 3C h . 

As a result, substitution of Eq. (4) into the strain–displacement relations of shell, Eq. (1), strains 
would be written as: 
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3.3 Stress resultant 

The force and moment resultants are achieved by integrating the stresses over the shell thickness. 
The normal and shear force resultants are: 
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The bending and twisting moment resultants and higher order shear resultant terms are: 
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The dimensions of force and moment resultants are force per unit length and moment per unit 
length, respectively. Also, by substitution of Eqs. (5) and (6) into the stress-strain relations in Eq. 
(2) and expressing resultants into Eqs. (7) and (8) can be written: 
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3.4 Equations of motion 

Now, the displacement field, Eq. (4), can be utilized to derive the governing equations of the third-
order shear deformation theory of orthotropic shells by means of Hamilton's principle. It can be 
obtained as: 

 

0 0

[ ] 0  
T T

Ldt K V U dtd d d d= + - =ò ò  (12)

 
In which Kd , Ud and Vd  are the virtual kinetic energy, the virtual strain energy and the virtual 

potential energy due to the applied loads, respectively and are given by: 
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Also, using Eqs. (7) and (8), the virtual strain energy equation can be re-written as below:  
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and virtual potential energy would be equal to: 
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where 0 W  denotes mid-surface of the shell. 

By substitution of Kd , Ud and Vd from Eqs. (13) to (16) into Eq. (12) and then considering that 
the virtual generalized displacements are zero at 0t =  and t T= , the equations of motion for cy-
lindrical shell are obtained as follows: 
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where 3q is the transversal load on the shell's surface and iI  is the mass inertias. Hence, Eqs. (22) 

and (23) would be found as below: 
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The other terms are summarized as follows:  
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3.5 Wave equations 

The harmonic incident plane wave, 1
IP , in cylindrical coordinate (see Figure 1) can be expressed as 

(Daneshjouet al., 2008): 
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where 0P  is the amplitude of the incident wave; nJ represents the Bessel function of the first kind of 

order n, w denotes the angular frequency and 1j = - . Other undefined parameters are: 
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where 1k is the wave number in the moving medium that can be written as: 
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in which 1 1/M V c=  is the Mach number of the external flow. 

Moreover, since the traveling wave in the acoustic media and cavity of the shell are driven by 

the incident traveling wave, the wave numbers in 
3h  direction should match throughout the sys-

tem, therefore: 
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The wave radiated from the shell to the outside and inside the cavity, respectively is written in 
the following forms: 
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where 1
nH  and 2

nH  are the cylindrical Hankel functions of first and second kinds of order n, respec-

tively. In the external space, the pressure 1 1 1
I RP P P= +  satisfies the following wave equation 

(Daneshjou et al., 2009; Howe, 2000): 
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where 2 is the Laplacian operator in the cylindrical coordinate system, 1
IP and 1

RP  denote the 

acoustic pressures of the incident and reflected waves, respectively. The acoustic pressure of the 

transmitted wave, 3
TP ,in the internal cavity satisfies the acoustic wave equation: 
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t
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¶
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3.6 Vibro-acoustic boundary conditions 

The acceleration of the fluid particle through the acoustic media in the normal direction has to be 
equal to the normal acceleration of the shell. Based on Helmholtz equations in the internal and ex-
ternal spaces, boundary conditions of the model can be defined as (Daneshjou et al., 2009, Howe, 
2000): 
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3.7 Vibro-acoustic solution 

The displacement and rotation terms of the mid-surface can be written as follows: 
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Eventually, by substituting Eqs. (26) to (31) and also Eq. (36) into the shell equations of motion 

and boundary conditions equations (Eqs. (34) and (35)), the following 7 × 7 coupled linear systems 
of equations are obtained in terms of circumferential mode number and frequency. These seven 
equations involve eight variables including amplitudes of the outgoing and incoming waves in the 
exterior cavity, transmitted wave in the interior cavity, three displacements and two rotations of 
the shell structure. These equations are solved simultaneously with considering the pressure ampli-
tude of the incident wave as the independent variable and the other seven unknown variables 

1 2 3 1 2 1 3, , , , , ,R T
n n n n n n nU U U P Pf f  in terms of 0P . 

 
{ }A X Bé ù é ù=ë û ë û  (37) 

where 
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Elements of Aé ùë û  and Bé ùë û  are given in Appendix. 

 
3.8 Transmission loss 

TL can be defined as the ratio of incoming and transmitted sound power per unit length of the 
cylinder (Lee and Kim, 2003). Hence: 
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where TW  is the transmitted power flow per unit length of the shell and can be written by: 
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where { }Re ...  and the superscript * , represent the real part and the complex conjugate of the ar-

gument, respectively. Calculating the components of 3
TP  and 3U  from Eq. (37), TW  will be equal 

to: 
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(43) 

 
and the incident power flow per unit length of the shell is: 
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Finally, the TL can be obtained by substituting Eqs. (43) and (44) into Eq. (41): 
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In case of a diffuse field excitation, the average power transmission coefficientin the diffuse field 

is given as (Pierce, 1981): 
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t t a a a a= ò  (46) 

 

where ( )t a  is the power transmission coefficient calculated for the incident angle, a . Also mina  and 

maxa  are critical angles of incidence. The average aveTL  is given as (Lee and Kim, 2003): 
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 (47)

 

4 CONVERGENCE PROCEDURE 

A convergence checking is required in this analysis due to the fact that the solutions are expressed 
in series form and the use of infinite numbers of modes is unfeasible. Therefore, an iterative proce-
dure in each frequency is constructed, considering the maximum iteration number. Unless that the 
convergence condition is met, it iterates again. The solution is considered to be convergent at each 
frequency, when the TLs calculated at two successive calculations are within a pre-set error bound 
( 810-  dB in this work). Figure 2 depicts the concept of this convergence. This algorithm enables 
the code to consider sufficient terms for the series form solution in calculating the TL. 



M. H. Shojaeefard et al. / Sound Transmission across Orthotropic Cylindrical Shells Using Third-order Shear Deformation Theory     2055 

Latin American Journal of Solids and Structures 11 (2014) 2039-2072 
 

Solving the Vibro-Acoustic 
Equations

Displacement 
and

Pressure

Calculating TL
at each frequency

n	ൌn	1

Plotting TL

Yes

No

7( 1) ( ) 10TL n TL n -+ - <

 

Figure 2: Algorithm for identifying the optimum mode number 
 

Figure 3 shows the convergence of TL curves at 10 kHz for a Glass/Epoxy cylindrical shell whose 
properties are listed in Table 1 (Daneshjou et al., 2009). As illustrated in Figure 3, by increasing 
the radius of the shell, the number of modes to achieve a converged solution is increased. As shown 
in Table 2, increasing the frequency has a direct effect on the convergence and hence more numbers 
of modes are needed at high frequency. In addition, as the accuracy of the results increase, the 
number of required modes also increases. 
 

Material 
Shell Cavity Ambient 

Aluminum Steel Graphite/Epoxy Glass/Epoxy Boron/Epoxy Air Air 

r 3 ( / )kg m  2760 7750 1600 1900 1600 0.94 0.3795 

11( )E GPa  72 210 137.9 38.6 206 - - 

22( )E GPa  72 210 8.96 8.2 20.6 - - 

12( )G GPa  27.7 80.77 7.1 4.2 6.89 - - 

13( )G GPa  27.7 80.77 7.1 4.2 6.89 - - 

23( )G GPa  27.7 80.77 6.2 3.45 4.1 - - 
u12  0.3 0.3 0.3 0.26 0.3 - - 

/ ( )c m s  
- - - - - 328.5 296.6 

) (R m  
                                                      1.5

) (h mm  
                                                      1.5

 ()a   45 

Table 1: Environmental and Geometrical properties.
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Figure 3: Mode convergence diagram for Glass/Epoxy cylindrical shell at 10 kHz 

 
 

Error Band 
(dB) 

Radius 
(m) 

Thickness 
(mm) 

Frequency 
(Hz) 

Mode  

Number 

610-  

1 10 

100 6 

1000 20 

10000 134 

1.5 15 

100 6 

1000 28 

10000 193 

2 20 

100 7 

1000 32 

10000 253 

810-  

1 10 

100 6 

1000 21 

10000 140 

1.5 15 

100 7 

1000 30 

10000 199 

2 20 

100 8 

1000 34 

10000 264 

 
Table 2: Effect of radius, thickness and frequency on mode convergence 
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5 RESULTS AND DISCUSSION 

In order to validate the present formulation and the developed code, the results obtained for the 
shells have been compared with those of the literature. Firstly, the analytical model presented by 
Lee and Kim (2003) and statistical energy analysis (SEA) are employed to validate the results for 
the special case of isotropic shell. Then, the model impedance method is utilized using the work 
presented by Koval (1979) for an orthotropic cylindrical shell. 

In Figure 4 the results of TSDT are compared with those of Lee and Kim's (2003) for an iso-
tropic steel shell with characteristics as listed in Table 1. It can be seen that there is a good 
agreement between the results of two theories in the figure. The little differences are observed due 
to some numerical errors in calculation of the incident and transmitted powers in Kim's model. 
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Figure 4: Comparison of present study (TSDT) with Lee and Kim 

 

Figure 5 compares the diffuse field transmission loss ( aveTL ) obtained from the present model 

with the numerical results achieved by statistical energy analysis approach using a wave number 
approach based on the proposed discrete laminate theory. Details of calculations of the required 
parameters (modal density, damping and coupling loss factor and radiation efficiency) for the 
SEA calculations are represented by Ghinet (2006) and Yuan (2012). 

As illustrated in Figure 5, the predicted aveTL obtained from the present model reveals a good 

agreement with the SEA simulation, particularly at high-frequency. SEA is based on simulating 
the vibro-acoustic energy flow between subsystems of the full system. It is very good in the study 
of sound and vibration transmission through complex structures at high frequencies. However, it 
is notreliable at low frequencies due to the statistical uncertainties that occur when there are few 
resonant modes in each of the subsystems. For this reason,a difference is observed at low frequen-
cies. If the isotropic shell is assumed to be steel shell, then 432.9rf = and 3991.5cf = . These es-

timated values are depicted in Figure 5. It can be observed that they are accurately estimated. 
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Figure 5: Comparison aveTL for random incident angles of present study (TSDT) with SEA 

 

In Figure 6 the results of present study compared with those of Koval’s (1979) for a Graphi-
te/Epoxy shell with the same condition as listed in Table 1. As it is demonstrated in the figure, 
some discrepancies are observed. It is happened as a result of using Flugge shell theory as well as 
applying only a transverse direction, in Koval’s study. 
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Figure 6: Comparison of present study (TSDT) with Koval 

 

The present model is also compared with CST and FSDT used by Daneshjou et al. (2009) for 
a cylindrical shell made of Graphite/Epoxy. As depicted in Figures 7 to 9, the results show the 
present approach to be a much more accurate model because of using the TSDT and ignoring all 
previous simplifying assumptions by expanding the displacements as cubic functions of the thick-
ness coordinate. 
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Figure 7: Comparison of present study (TSDT) with CST and FSDT for R/h=1000 
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Figure 8: Comparison of present study (TSDT) with CST and FSDT for R/h=100 
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Figure 9: Comparison of present study (TSDT) with CST and FSDT for R/h=20 

  

The results also indicate that TSDT are exactly similar with those of CST and FSDT in low fre-
quencies. However, considerable errors are observed comparing the results of these theories at the 
high-frequency range, due to the effects of shear and rotation on TL. As depicted in Figures 8 and 
9, with decrease of the ratio of R/h, the difference between TSDT and FSDT, is increased espe-
cially at high frequencies. It appears that, the effects of shear deformation on sound transmission 
are increased when the wave lengths are short enough, i.e., of the same order or less than the 
thickness of the shell. Table 3 provides a comparison between the computed results from TSDT, 
CST and FSDT with the different R/h ratios. The errors of these theories are presented in     
Table 4 in comparison with TSDT. Overall, according to the results shown in Table 3, for thick 
shells, there are some discrepancies between TSDT and FSDT in high frequencies (about 24% 
difference for R/h = 20) which is due to the less precise model of FSDT. 

 

 
  Frequency (Hz)   

  100 1000 10000 20000 30000 40000 50000 

TL 
(dB) 

R/h=1000

CST 6.47 29.21 50.53 73.14 84.37 92.14 98.12 

FSDT 6.47 29.21 48.85 69.76 78.44 83.58 87.09 

TSDT 6.46 29.19 49.99 70.42 79.05 84.17 87.67 

R/h=100 

CST 36.97 50.99 116.96 137.54 146.73 153.47 160.06 

FSDT 36.97 49.38 96.55 106.74 108.46 110.23 113.36 

TSDT 36.94 50.42 97.02 106.37 112.89 118.24 122.82 

R/h=20 

CST 53.46 98.17 159.67 177.05 186.47 193.05 196.89 

FSDT 53.39 87.17 113.06 118.49 120.98 122.99 123.02 

TSDT 53.30 87.56 122.65 138.69 148.81 156.15 161.89 
 

Table 3: Comparison between present study (TSDT) and FSDT for different frequencies and R/h. 
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  Frequency (Hz)     

  100 1000 10000 20000 30000 40000 50000 

Error 
(%) 

R/h=1000 
CST 0.18 0.06 1.09 3.86 6.74 9.47 11.92 

FSDT 0.14 0.06 -2.28 -0.93 -0.77 -0.70 -0.67 

R/h=100 
CST 0.09 1.11 20.55 29.30 29.98 29.80 30.32 

FSDT 0.08 -2.07 -0.49 0.34 -3.92 -6.77 -7.70 

R/h=20 
CST 0.30 12.11 30.19 27.66 25.30 23.63 21.62 

FSDT 0.17 -0.45 -7.82 -14.57 -18.71 -21.23 -24.01 
 

Table 4: Error (%) in comparison to present study (TSDT) for different frequencies and R/h. 
 
Figures 7 to 9 and Table 3 indicate that with increasing the thickness, TL is enhanced and 

coincidence frequency shifts backward. At high frequencies, the wave lengths are very short in 
comparison to radius of the shell. Therefore, the radius of the shell does not influence the TL. 
Moreover, the results for CST are more than those of FSDT and TSDT at high frequencies. It is 
due to the fact that the shear and rotation are both significant in sound power transmission in 
high frequency range whereas the CST is completely ignored them. Also, the results presented in 
a forementioned figures and tables indicate that the difference between the results of TSDT and 
FSDT will become more significant in high frequencies especially for thick shells. Therefore, the-
need to use higher order shear deformation theory such as TSDT would increase. However, the 
FSDT seems to be a conservative criterion in comparison with TSDT in high frequencies as a 
result of demonstrating the least amounts of TL. 

 
 

6 INVESTIGATIONS OF PARAMETERS 

Figure 10 shows the effects of radius with R=0.5, 1.0 and 1.5 on TL. With increasing the shell 
radius, the TL is decreased in the stiffness-control region and the ring frequency shifts backward 
which are due to the curvature effect of the shell on its stiffness.  
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Figure 10: Investigation of R effect on TL curves 
 

To investigate the effects of shell thickness, a comparison is made for three different shell thi-
cknesses of h = 1.5, 1.0 and 0.5 mm in Figure 11. As it is clear, with increasing the thickness, TL 
is enhanced and coincidence frequency shifts backward. 
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Figure 11: Investigation of h effect on TL curves 

 
The results of present study for three different incident angles are shown in Figure 12. The 

inspection of this figure represents that increasing of a , leads to impressive descend of TL in the 
stiffness-controlled region whereas it is enhanced in the mass-controlled region. Also, with increa-
sing the incident angle, the coincidence frequency shifts forward. This is due to the fact that in-
creasing the incident angle leads to reduction of the radial wave number and growth of the axial 
wave number for the cylindrical shell. 
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Figure 12: Investigation of a effect on TL curves 
 

Figure 13 shows the effect of varying density on TL. The results indicate a direct relationship 
between density of the material and TL in the mass-controlled region. On the other hand, decrea-
sing this parameter leads to forward shift of the ring frequency and backward shift of the coinci-
dence frequency. 
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Figure 13: Investigation of r  effect on TL curves 

 

Figure 14 shows the effect of the different orthotropic material on TL. Materials chosen for the 
purpose of comparison are Graphite/Epoxy, Glass/Epoxy and Boron/Epoxy with the properties 
listed in Table 1. The figure shows that the material must be chosen properly to elevate TL at 
stiffness-controlled region. The results display that the Glass/Epoxy is the most effective in the 
mass controlled region because its density is the largest. As shown in Figure 14, the Bo-
ron/Epoxy, which has the highest stiffness, is the most effective one at the low frequency ranges. 
This could be anticipated as it is controlled with the stiffness below the ring frequency. 
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Figure 14: Investigation of different materials effect on TL curves 
 

Finally, the influence of varying the mechanical properties of materials on the transmission loss of 
orthotropic cylindrical shell are studied and discussed. Figure 15 and 16 depict the effects of 
varying the Young's modulus on TL in 1h  and 2h directions, respectively. A cylindrical shell 

made up of the Graphite/Epoxy is considered as the basis in this study. The different values of 

11 11/E E¢ ratios are set to 1, 2, 5 and 10. The TL for the Graphite/Epoxy shell (
11 11/ 1E E =¢ ) is 

also illustrated. It can be seen from Figure 15 that increasing the stiffness in the 1h - direction of 

an orthotropic shell increases the TL at low and high frequency bands. Also, the ring frequency 
remains unchanged in this case. 
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Figure 15: Investigation of 11E effect on TL curves 
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Figure 16: Investigation of 22E effect on TL curves 

 
In addition, Figure 16 shows that the TL is enhanced around the ring frequency as a result of 

increasing the stiffness in the 2h - direction. It is noted that the coincidence frequency is not sensi-

tive to variation of this parameter. 
Figure 17 shows the effect of decreasing 13G from 13 13/ 1G G¢ =  to 13 13/ 0.1G G¢ = while the 

other mechanical properties of the cylindrical shell are kept constant. The wave numbers rise for 
small values of 13G , which will easily lead to loss of acoustic energy. Consequently, the transmis-

sion loss of orthotropic shell with small 13 13/G G¢ is lower than that with large 13 13/G G¢  in 

highfrequencies. 
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Figure 17: Investigation of 13G effect on TL curves 
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Figure 18 illustrates the variation of TL with reducing the shear modulus 23G . In this         

case, 23 23/ 1G G¢ = , 0.5, 0.2 and 0.1 are chosen while the other properties remain constant. The 

results indicate that increasing the shear stiffness, 23G , will enhance the TL in orthotropic cylin-

drical shells at low frequencies. As can be seen from the Figure 17 and 18, the sound transmission 
loss might be enhanced by increasing the shear stiffnesses, 13G  and 23G , only at high and low 

frequencies, respectively. 
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Figure 18: Investigation of 23G effect on TL curves 

 

As shown in Figure 19, altering the shear stiffness 12G does not change the sound transmission 

loss. 
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Figure 19: Investigation of 12G effect on TL curves 
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The effect of variation of Poisson’s ratio ( 12u ) on TL isdepicted in Figure 20. The value of 12u  
is set to 0.4, 0.3, 0.2 and 0.1. However, Young’s modulus and shear modulus are not changed. 

As it is obvious, variation of Poisson’s ratio has no significant effect on TL over the entire 
range of frequency. 
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Figure 20: Investigation of 12u effect on TL curves 

 
The results discussed above, could be applied in designing the insulating structural shell. In 

other word, in such conditions that conducting experiments are rather difficult for measuring TL 
of the cylindrical shells, the proposed method would be useful to analyze such cases. This is the 
other contribution of this study to analyze the sound insulating properties. These results are ho-
pefully practical for analyzing the sound insulating capabilities of a cylindrical shell. 
 
 
7 CONCLUSIONS 

An analytical model is developed in this paper for sound transmission across a thick-walled 
orthotropic cylindrical shell, based on the third-order shear deformation theory (TSDT). The 
cylindrical shell is assumed to be infinitely long and is subjected to an oblique plane sound wave 
with uniform airflow in the external fluid medium. Particularly, the following conclusions can be 
made: 

1) For a thin-walled cylindrical shell, the TLs predicted using TSDT is of high compatibility 
with those of CST and FSDT in low frequencies. However, in high frequencies, the CST 
does not consider the effect of shear and rotation; therefore, it could not reach in agree-
ments with other higher theories.  In these frequencies the results from FSDT and TSDT 
are still in a good agreement which means that for the thin shells, there is no need to use 
more complicated theories such as TSDT. 

2) For a thick-walled cylindrical shell, the difference between the results of TSDT and FSDT 
will become more significant except for low frequencies where shear and rotation effects 
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could be ignored. Therefore, the need to use higher order shear deformation theory such 
as TSDT would increase. 

3) Since FSDT theory predicts lower amounts of TL in comparison with the other two 
methods, it could be used as the most conservative theory in sound insulator design. Nev-
ertheless, TSDT would be the appropriate where the designers need perfect model. 

4) Decreasing 11E  tends to reduce TL of the cylinder in stiffness-controlled and coincidence 

controlled regions, where the coincidence frequency shifts upwards. It suggests that the 
TL might be enhanced by making the cylindrical shell stiffer in the axial direction than 
the circumferential direction. 

5) TL of the cylindrical shell might be enhanced by increasing the 22E around the ring fre-

quency. Moreover, it does not influence the coincidence frequency at all. 
6) Increasing the shear stiffness 13G and 23G  of orthotropic cylindrical shell might enhance 

the sound transmission loss only at high and low frequencies, respectively. 
7) The results demonstrate that variation of the shear stiffness, 12G , and Poisson's ratio, 12u , 

does not have a considerable effect on TL of cylindrical shells. 
The proposed method can reasonably simulate the real phenomenon of sound transmission loss 

across orthotropic shells. Further work is under development to extend present analytical model 
for the prediction of sound transmission through a stiffened thick-walled laminated composite 
cylindrical shells. 
 

 

APPENDIX 

The elements of Aé ùë û  and Bé ùë û  matrices are given below: 
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45 1 12 66 1 12 66 1 12 66( ( 2 2 ( )))zA nK D D C F F C H H= - + + - - + +  

51 1 21 66 1 21 66( ( ))zA nK B B C E E= - + - +  

2 2 2 2 3 2 2 2
52 44 22 1 66 1 44 1 222

1
( 6zA R W R A n RB R K B R C D n RC E

R
w ¢= + - - - + -  

3 2 2 2 2 2 2 2
1 44 1 1 66 1 22 1 44 1 1 66 1 444 9 12z zRC E R C K E n C F R C F R C K F RC G¢ ¢+ - + - + +  

2 2 2 2 2 2
1 22 1 44 1 1 664 )zn C H C H R C K H ¢+ +  

( ) 2 2 2 2
53 44 22 1 5 44 22 44 222

( ( 6 4
n

A R RA B C R J R D RE RE n F
R

w= - + - + - - -  

2 2 2 2 2 2
1 21 66 66 1 44 44 1 21 66 66( ) (9 12 ( )z zR K F F F C R F RG R K H H H¢ ¢+ + + + + + + +  

22 444 )))H H+  

54 1 21 66 1 21 66 1 21 66( ( 2 2 ( )))zA nK D D C F F C H H= - + + - - + +  

2 2 2 2 2 2 2
55 44 22 1 44 1 66 1 44 1 22

1
( 6 4 2zA JR R A n D R C D R K D RC E n C F
R

w ¢= - - + + - + - - +  

2 2 2 2 2 2 2 2 2 2 2
1 44 1 1 66 1 44 1 22 1 44 1 1 669 2 12 4 )z zR C F R C K F RC G n C H C H R C K H¢ ¢- + + + +  

( )2 2 2
63 1 1 1 1 12z zA V K V Kr w r r w= - + +  

2
66 1 1( )n r i rA K RH K¢=  

2
73 3A r w= -  

1
77 3 3( )n r i rA H K R K¢=  

( )3 1 0( )
n

n n r iB j J K R P= -  

( )6 0 1 1( )
n

n n r i rJB P j K R K= ¢-   
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